共 68 条
- [11] Forgy EW(2018)Solving high-dimensional partial differential equations using deep learning Proc. Natl. Acad. Sci. 115 8505-8510
- [12] González-García R(2020)Simulator-free solution of high-dimensional stochastic elliptic partial differential equations using deep neural networks J. Comput. Phys. 404 109120-243
- [13] Rico-Martínez R(1991)Nonlinear principal component analysis using autoassociative neural networks AIChE J. 37 233-1000
- [14] Kevrekidis IG(1998)Artificial neural networks for solving ordinary and partial differential equations IEEE Trans. Neural Netw. 9 987-133
- [15] Haber E(2020)Variational training of neural network approximations of solution maps for physical models J. Comput. Phys. 409 109338-955
- [16] Ruthotto L(1943)A logical calculus of the ideas immanent in nervous activity Bull. Math. Biophys. 5 115-707
- [17] Hayati M(2017)Sympy: symbolic computing in python PeerJ Comput. Sci. 3 e103-1364
- [18] Karami B(2018)Deep hidden physics models: deep learning of nonlinear partial differential equations J. Mach. Learn. Res. 19 932-380
- [19] Hermann J(2019)Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations J. Comput. Phys. 378 686-A665
- [20] Schätzle Z(2018)DGM: a deep learning algorithm for solving partial differential equations J. Comput. Phys. 375 1339-undefined