Global solutions to 3D incompressible rotational MHD system

被引:0
作者
Jaewook Ahn
Junha Kim
Jihoon Lee
机构
[1] Dongguk University,Department of Mathematics
[2] Chung-Ang University,Department of Mathematics
来源
Journal of Evolution Equations | 2021年 / 21卷
关键词
Coriolis effect; Magnetohydrodynamics; Well-posedness; 35Q86; 76D03; 76U05;
D O I
暂无
中图分类号
学科分类号
摘要
This study investigates the Cauchy problem of an incompressible magnetohydrodynamic system in the rotational framework. Under the assumption that the rotation speed is sufficiently large, the Cauchy problem is shown to be globally well-posed in Hs(R3)×(L2∩Lq)(R3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{s}({{\mathbb {R}}}^3)\times (L^2\cap L^q) ({{\mathbb {R}}}^3)$$\end{document} for 12<s<34\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}<s < \frac{3}{4}$$\end{document} and 3<q<min{63-2s,276+4s}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3<q < \min \{\frac{6}{3-2s},\,\frac{27}{6 + 4s}\}$$\end{document}.
引用
收藏
页码:235 / 246
页数:11
相关论文
共 42 条
[1]  
Babin A(1997)Regularity and integrability of 3D Euler and Navier–Stokes equations for rotating fluids Asymptotic Analysis 15 103-150
[2]  
Mahalov A(1999)Global regularity of 3D rotating Navier–Stokes equations for resonant domains Indiana University Mathematics Journal 48 1133-1176
[3]  
Nicolaenko B(2001)3D Navier–Stokes and Euler equations with initial data characterized by uniformly large vorticity Indiana University Mathematics Journal 50 1-35
[4]  
Babin A(1972)Inéquations en thermoélasticité et magnétohydrodynamique Archive for Rational Mechanics and Analysis 46 241-279
[5]  
Mahalov A(2005)Uniform local solvability for the Navier–Stokes equations with the Coriolis force Methods and Applications of Analysis 12 381-394
[6]  
Nicolaenko B(2008)Uniform global solvability of the rotating Navier–Stokes equations for nondecaying initial data Indiana University Mathematics Journal 57 2775-2791
[7]  
Babin A(2007)On the regularity criteria for weak solutions to the magnetohydrodynamic equations Journal of Differential Equations 238 1-17
[8]  
Mahalov A(2005)On the regularity of weak solutions to the magnetohydrodynamic equations Journal of Differential Equations 213 235-254
[9]  
Nicolaenko B(2010)The Fujita–Kato approach to the Navier–Stokes equations in the rotational framework Mathematische Zeitschrift 265 481-491
[10]  
Duvaut G(2012)Time periodic solutions to the Navier–Stokes equations in the rotational framework Journal of Evolution Equations 12 985-1000