Nanostructured Fe2O3–graphene composite as a novel electrode material for supercapacitors

被引:8
作者
Dewei Wang
Yuqi Li
Qihua Wang
Tingmei Wang
机构
[1] Chinese Academy of Sciences,State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics
[2] Graduate School of Chinese Academy of Sciences,undefined
来源
Journal of Solid State Electrochemistry | 2012年 / 16卷
关键词
Fe; O; Graphene; Nanoparticles; Electrochemical performance;
D O I
暂无
中图分类号
学科分类号
摘要
Nanostructured Fe2O3–graphene composite was successfully fabricated through a facile solution-based route under mild hydrothermal conditions. Well-crystalline Fe2O3 nanoparticles with 30–60 nm in size are highly encapsulated in graphene nanosheet matrix, as demonstrated by various characterization techniques. As electrode materials for supercapacitors, the as-obtained Fe2O3–graphene nanocomposite exhibits large specific capacitance (151.8 F g−1 at 1 A g−1), good rate capability (120 F g−1 at 6 A g−1), and excellent cyclability. The significantly enhanced electrochemical performance compared with pure graphene and Fe2O3 nanoparticles may be attributed to the positive synergetic effect between Fe2O3 and graphene. In virtue of their superior electrochemical performance, they will be promising electrode materials for high-performance supercapacitors applications.
引用
收藏
页码:2095 / 2102
页数:7
相关论文
共 50 条
  • [1] Nanostructured Fe2O3-graphene composite as a novel electrode material for supercapacitors
    Wang, Dewei
    Li, Yuqi
    Wang, Qihua
    Wang, Tingmei
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (06) : 2095 - 2102
  • [2] Advanced negative electrode of Fe2O3/graphene oxide paper for high energy supercapacitors
    Xie, Shilei
    Zhang, Min
    Liu, Peng
    Wang, Shoushan
    Liu, Si
    Feng, Haobin
    Zheng, Haibing
    Cheng, Faliang
    MATERIALS RESEARCH BULLETIN, 2017, 96 : 413 - 418
  • [3] Synthesis of MnCo2O4.5/graphene Composite as Electrode Material for Supercapacitors
    Li, Yanhua
    Peng, Xiahui
    Xiang, Jialian
    Yang, Jiaxin
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2017, 12 (11): : 10763 - 10772
  • [4] Nanostructured Polyaniline/Graphene/Fe2O3 Composites Hydrogel as a High-Performance Flexible Supercapacitor Electrode Material
    Gupta, Anjli
    Sardana, Silki
    Dalal, Jasvir
    Lather, Sushma
    Maan, Anup S.
    Tripathi, Rahul
    Punia, Rajesh
    Singh, Kuldeep
    Ohlan, Anil
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (07) : 6434 - 6446
  • [5] Design and Preparation of Graphene/Fe2O3 Nanocomposite as Negative Material for Supercapacitor
    Gao Wei
    Li Yufeng
    Zhao Jitao
    Zhang Zhe
    Tang Weiwei
    Wang Jun
    Wu Zhenyu
    Li Zhenyu
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2022, 38 (04) : 1097 - 1104
  • [6] Design and Preparation of Graphene/Fe2O3 Nanocomposite as Negative Material for Supercapacitor
    Wei Gao
    Yufeng Li
    Jitao Zhao
    Zhe Zhang
    Weiwei Tang
    Jun Wang
    Zhenyu Wu
    Zhenyu Li
    Chemical Research in Chinese Universities, 2022, 38 : 1097 - 1104
  • [7] Binding Fe2O3 nanoparticles in polydopamine-reduced graphene as negative electrode materials for high-performance asymmetric supercapacitors
    Jinjun Tian
    Yan Xue
    Xinping Yu
    Yuanchao Pei
    Hucheng Zhang
    Jianji Wang
    Journal of Nanoparticle Research, 2019, 21
  • [8] A novel Fe2O3 rhombohedra/graphene composite as a high stability electrode for lithium-ion batteries
    Jiang, Yong
    Ling, Xuetao
    Cai, Xinhui
    Jiao, Zheng
    Cheng, Lingli
    Bian, Lifeng
    Nguyen, Manhtai
    Chu, Yuliang
    Zhao, Bing
    JOURNAL OF MATERIALS RESEARCH, 2015, 30 (06) : 761 - 769
  • [9] 1-Dimensional porous α-Fe2O3 nanorods as high performance electrode material for supercapacitors
    Chaudhari, Sudeshna
    Bhattacharjya, Dhrubajyoti
    Yu, Jong-Sung
    RSC ADVANCES, 2013, 3 (47): : 25120 - 25128
  • [10] Hierarchical nanostructured α-Fe2O3/polyaniline anodes for high performance supercapacitors
    Yang, Zhaokun
    Tang, Li
    Ye, Jin
    Shi, Dongjian
    Liu, Shirong
    Chen, Mingqing
    ELECTROCHIMICA ACTA, 2018, 269 : 21 - 29