Newton polygons of Hecke operators

被引:0
作者
Liubomir Chiriac
Andrei Jorza
机构
[1] Portland State University,Fariborz Maseeh Department of Mathematics and Statistics
[2] University of Notre Dame,Department of Mathematics
来源
Annales mathématiques du Québec | 2021年 / 45卷
关键词
Traces of Hecke operators; Slopes of modular forms; Primary: 11F33; Secondary: 11F30; 11F85;
D O I
暂无
中图分类号
学科分类号
摘要
In this computational paper we verify a truncated version of the Buzzard–Calegari conjecture on the Newton polygon of the Hecke operator T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_2$$\end{document} for all large enough weights. We first develop a formula for computing p-adic valuations of exponential sums, which we then implement to compute 2-adic valuations of traces of Hecke operators acting on spaces of cusp forms. Finally, we verify that if Newton polygon of the Buzzard–Calegari polynomial has a vertex at n≤15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\le 15$$\end{document}, then it agrees with the Newton polygon of T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_2$$\end{document} up to n.
引用
收藏
页码:271 / 290
页数:19
相关论文
empty
未找到相关数据