Newton polygons of Hecke operators

被引:0
|
作者
Liubomir Chiriac
Andrei Jorza
机构
[1] Portland State University,Fariborz Maseeh Department of Mathematics and Statistics
[2] University of Notre Dame,Department of Mathematics
来源
Annales mathématiques du Québec | 2021年 / 45卷
关键词
Traces of Hecke operators; Slopes of modular forms; Primary: 11F33; Secondary: 11F30; 11F85;
D O I
暂无
中图分类号
学科分类号
摘要
In this computational paper we verify a truncated version of the Buzzard–Calegari conjecture on the Newton polygon of the Hecke operator T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_2$$\end{document} for all large enough weights. We first develop a formula for computing p-adic valuations of exponential sums, which we then implement to compute 2-adic valuations of traces of Hecke operators acting on spaces of cusp forms. Finally, we verify that if Newton polygon of the Buzzard–Calegari polynomial has a vertex at n≤15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\le 15$$\end{document}, then it agrees with the Newton polygon of T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_2$$\end{document} up to n.
引用
收藏
页码:271 / 290
页数:19
相关论文
共 50 条
  • [1] Newton polygons of Hecke operators
    Chiriac, Liubomir
    Jorza, Andrei
    ANNALES MATHEMATIQUES DU QUEBEC, 2021, 45 (02): : 271 - 290
  • [3] NEWTON POLYGONS AND GEVREY INDEXES FOR LINEAR PARTIAL-DIFFERENTIAL OPERATORS
    MIYAKE, M
    HASHIMOTO, Y
    NAGOYA MATHEMATICAL JOURNAL, 1992, 128 : 15 - 47
  • [4] A τ-Conjecture for Newton Polygons
    Koiran, Pascal
    Portier, Natacha
    Tavenas, Sebastien
    Thomasse, Stephan
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2015, 15 (01) : 185 - 197
  • [5] Hecke operators and equidistribution of Hecke points
    Laurent Clozel
    Hee Oh
    Emmanuel Ullmo
    Inventiones mathematicae, 2001, 144 : 327 - 351
  • [6] Pseudodifferential operators and Hecke operators
    Choie, YJ
    APPLIED MATHEMATICS LETTERS, 1998, 11 (05) : 29 - 34
  • [7] Hecke operators and equidistribution of Hecke points
    Clozel, L
    Oh, H
    Ullmo, E
    INVENTIONES MATHEMATICAE, 2001, 144 (02) : 327 - 351
  • [8] Pseudodifferential operators and Hecke operators
    Appl Math Lett, 5 (29-34):
  • [9] Newton polygons and families of polynomials
    Bodin, A
    MANUSCRIPTA MATHEMATICA, 2004, 113 (03) : 371 - 382
  • [10] Brasselet number and Newton polygons
    Thaís M. Dalbelo
    Luiz Hartmann
    manuscripta mathematica, 2020, 162 : 241 - 269