Integral γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document}-Sliding Mode Control for a Quadrotor with Uncertain Time-Varying Mass and External Disturbance

被引:0
作者
Yeong-Cheol Um
Ho-Lim Choi
机构
[1] Dong-A University,Department of Electrical Engineering
关键词
Quadrotor; Integral ; -sliding mode; Uncertain time-varying mass; External disturbance;
D O I
10.1007/s42835-021-00929-9
中图分类号
学科分类号
摘要
In this paper, we consider a robust control problem for a quadrotor that has uncertain time-varying mass and external disturbance. In solving our control problem, we suggest a new γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document}-sliding mode controller coupled with an integrator to tackle both uncertain time-varying mass and disturbance issues in the system. Through Lyapunov analysis of the controlled system, we show that the gain-scaling factor γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document} can effectively reduce the ultimate bound of each controlled state. The performance of the proposed controller is verified under the mass change during the experiment.
引用
收藏
页码:707 / 716
页数:9
相关论文
共 33 条
[32]   Concavity Property of Minimal L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} Integrals with Lebesgue Measurable Gain V–Fibrations Over Open Riemann Surfaces [J].
Shijie Bao ;
Qi’an Guan ;
Zheng Yuan .
The Journal of Geometric Analysis, 2023, 33 (6)
[33]   Bounds for q-integrals of ψr+1r+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${}_{r+1}\psi_{r+1}$\end{document} with applications [J].
Zhefei He ;
Mingjin Wang ;
Gaowen Xi .
Journal of Inequalities and Applications, 2015 (1)