Rational design of hierarchically porous Fe-N-doped carbon as efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries

被引:0
|
作者
Zihan Meng
Neng Chen
Shichang Cai
Jiawei Wu
Rui Wang
Tian Tian
Haolin Tang
机构
[1] Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
[2] Wuhan University of Technology,School of Material Science and Engineering
[3] Henan University of Technology,undefined
来源
Nano Research | 2021年 / 14卷
关键词
hierarchically porous structure; Fe-N-doped carbon; electrocatalysts; oxygen reduction reaction; Zn-air batteries;
D O I
暂无
中图分类号
学科分类号
摘要
The rational design and construction of hierarchically porous nanostructure for oxygen reduction reaction (ORR) electrocatalysts is crucial to facilitate the exposure of accessible active sites and promote the mass/electron transfer under the gas-solid-liquid triple-phase condition. Herein, an ingenious method through the pyrolysis of creative polyvinylimidazole coordination with Zn/Fe salt precursors is developed to fabricate hierarchically porous Fe-N-doped carbon framework as efficient ORR electrocatalyst. The volatilization of Zn species combined with the nanoscale Kirkendall effect of Fe dopants during the pyrolysis build the hierarchical micro-, meso-, and macroporous nanostructure with a high specific surface area (1,586 m2·g−1), which provide sufficient exposed active sites and multiscale mass/charge transport channels. The optimized electrocatalyst exhibits superior ORR activity and robust stability in both alkaline and acidic electrolytes. The Zn-air battery fabricated by such attractive electrocatalyst as air cathode displays a higher peak power density than that of Pt/C-based Zn-air battery, suggesting the great potential of this electrocatalyst for Zn-air batteries.
引用
收藏
页码:4768 / 4775
页数:7
相关论文
共 50 条
  • [1] Rational design of hierarchically porous Fe-N-doped carbon as efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries
    Meng, Zihan
    Chen, Neng
    Cai, Shichang
    Wu, Jiawei
    Wang, Rui
    Tian, Tian
    Tang, Haolin
    NANO RESEARCH, 2021, 14 (12) : 4768 - 4775
  • [2] Hierarchically porous Fe-N-doped carbon nanotubes as efficient electrocatalyst for oxygen reduction
    Li, Jin-Cheng
    Hou, Peng-Xiang
    Shi, Chao
    Zhao, Shi Yong
    Tang, Dai-Ming
    Cheng, Min
    Liu, Chang
    Cheng, Hui-Ming
    CARBON, 2016, 109 : 632 - 639
  • [3] Freestanding 1D Hierarchical Porous Fe-N-Doped Carbon Nanofibers as Efficient Oxygen Reduction Catalysts for Zn-Air Batteries
    Wu, Mengchen
    Li, Congling
    Liu, Rui
    ENERGY TECHNOLOGY, 2019, 7 (03)
  • [4] Interconnected Hierarchically Porous Fe, N-Codoped Carbon Nanofibers as Efficient Oxygen Reduction Catalysts for Zn-Air Batteries
    Zhao, Yingxuan
    Lai, Qingxue
    Wang, Ya
    Zhu, Junjie
    Liang, Yanyu
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (19) : 16178 - 16186
  • [5] Ferrocene-crosslinked polypyrrole hydrogel derived Fe-N-doped hierarchical porous carbon as an efficient electrocatalyst for pH universal ORR and Zn-air batteries
    Sun, Peng
    Zhang, Teng
    Luo, Haotian
    Dou, Jinli
    Bian, Weiwei
    Pan, Zhengxuan
    Zheng, Aili
    Zhou, Baolong
    NEW JOURNAL OF CHEMISTRY, 2021, 45 (22) : 10002 - 10011
  • [6] Rational synthesis of N/S-doped porous carbons as high efficient electrocatalysts for oxygen reduction reaction and Zn-Air batteries
    Lin, Hualin
    Chen, Daming
    Lu, Chenbao
    Zhang, Chao
    Qiu, Feng
    Han, Sheng
    Zhuang, Xiaodong
    ELECTROCHIMICA ACTA, 2018, 266 : 17 - 26
  • [7] Boosting Oxygen Reduction Catalysis with Hierarchically Porous Fe-Doped Carbon by Chemical Vapor Deposition in Zn-Air Batteries
    Wu, Jiawei
    Meng, Zihan
    Zhang, Ruiming
    Tian, Tian
    Wang, Rui
    Tang, Haolin
    ENERGY & FUELS, 2022, 36 (07) : 4006 - 4014
  • [8] Porous carbon nanosheets for oxygen reduction reaction and Zn-air batteries
    Samad, Shahzeb Ali
    Fang, Ziyu
    Shi, Pengfei
    Zhu, Jinhui
    Lu, Chenbao
    Su, Yuezeng
    Zhuang, Xiaodong
    2D MATERIALS, 2023, 10 (02)
  • [9] Fe-N-doped carbon-based composite as an efficient and durable electrocatalyst for the oxygen reduction reaction
    Panomsuwan, Gasidit
    Saito, Nagahiro
    Ishizaki, Takahiro
    RSC ADVANCES, 2016, 6 (115): : 114553 - 114559
  • [10] Co-SrCO3/N-doped carbon: a highly efficient hybrid electrocatalyst for the oxygen reduction reaction and Zn-air batteries
    He, Xiaobo
    Yin, Fengxiang
    Chen, Jinnan
    Ye, Caiyun
    INORGANIC CHEMISTRY FRONTIERS, 2017, 4 (06): : 1073 - 1086