General form of α-resolution principle for linguistic truth-valued lattice-valued logic

被引:0
作者
Xiaomei Zhong
Yang Xu
Jun Liu
Shuwei Chen
机构
[1] Southwest Jiaotong University,School of Mathematics
[2] University of Ulster,School of Computing and Mathematics
[3] Zhengzhou University,School of Electrical Engineering
来源
Soft Computing | 2012年 / 16卷
关键词
General form of ; -resolution principle; Resolution-based automated reasoning; Linguistic truth-valued lattice-valued logic; Linguistic truth-valued lattice implication algebra;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is focused on resolution-based automated reasoning theory in linguistic truth-valued lattice-valued logic based on linguistic truth-valued lattice implication algebra. Concretely, the general form of α-resolution principle based on the above lattice-valued logic is equivalently transformed into another simpler lattice-valued logic system. Firstly, the general form of α-resolution principle for lattice-valued propositional logic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ ({\fancyscript{L}}_{n} \times {\fancyscript{L}}_{2}){\text{P(X)}} $$\end{document} is equivalently transformed into that for lattice-valued propositional logic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \fancyscript{L}_{n} $$\end{document}P(X). A similar conclusion is obtained between the general form of α-resolution principle for linguistic truth-valued lattice-valued propositional logic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{L}}_{V(n \times 2)}$$\end{document}P(X) and that for lattice-valued propositional logic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{L}}_{Vn} $$\end{document}P(X). Secondly, the general form of α-resolution principle for lattice-valued first-order logic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ ({\fancyscript{L}}_{n} \times {\fancyscript{L}}_{2}) $$\end{document}F(X) is equivalently transformed into that for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{L}}_{n} $$\end{document}P(X). Similarly, this conclusion also holds for linguistic truth-valued lattice-valued first-order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{L}}_{V(n \times 2)} $$\end{document}F(X) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{L}}_{Vn} $$\end{document}P(X). The presented work provides a key theoretical support for automated reasoning approaches and algorithms in linguistic truth-valued logic, which can further support linguistic information processing for decision making, i.e., reasoning with words.
引用
收藏
页码:1767 / 1781
页数:14
相关论文
共 68 条
[1]  
Aguilera G(2001)Reductions for non-clausal theorem proving Theor Comput Sci 266 81-112
[2]  
de Guzmán L(1995)Resolution-based theorem proving for many-valued logics J Symbol Comput 19 353-391
[3]  
Ojeda-Aciego M(1992)Complexity of resolution proofs and function introduction Ann Pure Appl Logic 57 181-215
[4]  
Valverde A(1990)Resolution principle in possibilistic logic Int J Approx Reason 4 1-21
[5]  
Baaz M(1997)Labelled resolution for classical and non-classical logics Stud Log 59 179-216
[6]  
Fermüller CG(2008)Binary resolution over complete residuated stone lattices Fuzzy Sets Syst 159 1031-1041
[7]  
Baaz M(1972)Fuzzy logic and the resolution principle J ACM 19 109-119
[8]  
Leitsch A(1971)Some properties of fuzzy logic Inf Control 19 417-431
[9]  
Dubois D(2008)The properties of α-resolution and J-resolution based on lattice-valued propositional logic system Chin Q J Math 6 262-269
[10]  
Prade H(2007)Filter-based resolution principle for lattice-valued propositional logic LP(X) Inf Sci 177 1046-1062