Nonorientable minimal surfaces with catenoidal ends

被引:0
|
作者
Kohei Hamada
Shin Kato
机构
[1] Osaka City University,Department of Mathematics
关键词
Minimal surface; Nonorientable; Flux formula; Catenoidal end; Primary 53C42; Secondary 58E12;
D O I
暂无
中图分类号
学科分类号
摘要
Starting from the pioneering work by Meeks, complete nonorientable minimal surfaces with finite total curvature have been studied by many researchers. However, it seems that there are no known examples all of whose ends are embedded except for Kusner’s flat-ended N-noids. In this paper, we show the existence of a 1-parameter family of complete ZN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{Z}}_N$$\end{document}-invariant conformal minimal immersions from finitely punctured real projective planes into R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{R}}^3$$\end{document}, each of which has N+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N+1$$\end{document} catenoidal ends, for any odd integer N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3$$\end{document}. This family gives a deformation from an (N+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(N+1)$$\end{document}-noid with N catenoidal ends and a planar end to Kusner’s flat-ended N-noid. We also give a nonexistence result for such surfaces for any even integer N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}.
引用
收藏
页码:1573 / 1603
页数:30
相关论文
共 50 条