Starting from the pioneering work by Meeks, complete nonorientable minimal surfaces with finite total curvature have been studied by many researchers. However, it seems that there are no known examples all of whose ends are embedded except for Kusner’s flat-ended N-noids. In this paper, we show the existence of a 1-parameter family of complete ZN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbf{Z}}_N$$\end{document}-invariant conformal minimal immersions from finitely punctured real projective planes into R3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbf{R}}^3$$\end{document}, each of which has N+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$N+1$$\end{document} catenoidal ends, for any odd integer N≥3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$N\ge 3$$\end{document}. This family gives a deformation from an (N+1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(N+1)$$\end{document}-noid with N catenoidal ends and a planar end to Kusner’s flat-ended N-noid. We also give a nonexistence result for such surfaces for any even integer N≥2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$N\ge 2$$\end{document}.
机构:
Osaka City Univ, Dept Math, Sumiyoshi Ku, 3-3-138 Sugimoto, Osaka 5588585, JapanOsaka City Univ, Dept Math, Sumiyoshi Ku, 3-3-138 Sugimoto, Osaka 5588585, Japan
机构:
Univ Fed Rio Grande do Sul, Inst Matemat, BR-91540000 Porto Alegre, RS, BrazilUniv Fed Rio Grande do Sul, Inst Matemat, BR-91540000 Porto Alegre, RS, Brazil
Ripoll, Jaime
Tomi, Friedrich
论文数: 0引用数: 0
h-index: 0
机构:
Heidelberg Univ, Inst Math, D-69120 Heidelberg, GermanyUniv Fed Rio Grande do Sul, Inst Matemat, BR-91540000 Porto Alegre, RS, Brazil