Optimal Control of Nonlinear Fredholm Integral Equations

被引:0
作者
T. Roubíček
机构
[1] Charles University,Mathematical Institute
[2] Prague,undefined
[3] and Institute of Information Theory and Automation,undefined
[4] Academy of Sciences,undefined
来源
Journal of Optimization Theory and Applications | 1998年 / 97卷
关键词
Nonlinear integral equations; optimal control in ; -spaces; relaxation; existence; stability; nonconcentration; optimality conditions; Pontryagin maximum principle;
D O I
暂无
中图分类号
学科分类号
摘要
Optimal control problems with nonlinear equations usually do not possess optimal solutions, so that their natural (i.e., continuous) extension (relaxation) must be done. The relaxed problem may also serve to derive first-order necessary optimality condition in the form of the Pontryagin maximum principle. This is done here for nonlinear Fredholm integral equations and problems coercive in an Lp-space of controls with p<+∞. Results about a continuous extension of the Uryson operator play a key role.
引用
收藏
页码:707 / 729
页数:22
相关论文
共 14 条
[1]  
Angell T. S.(1976)On the Optimal Control of Systems Governed by Nonlinear Volterra Equations Journal of Optimization Theory and Applications 19 29-45
[2]  
Bakke V. L.(1974)A Maximum Principle for an Optimal Control Problem with Integral Constraints Journal of Optimization Theory and Applications 13 32-55
[3]  
Carlson D. A.(1987)An Elementary Proof of the Maximum Principle of Optimal Control Problems Governed by a Volterra Integral Equation Journal of Optimization Theory and Applications 54 43-61
[4]  
Schmidt W. H.(1982)Durch Integralgleichungen beschriebene optimale Prozesse mit Nebenbedingungen in Banachräumen—notwendige Optimalitätsbedingungen Zeitschrift für Angewandte Mathematik und Mechanik 62 65-75
[5]  
Schmidt W. H.(1992)Volterra Integral Processes with State Constraints System Analysis Modelling and Simulation 9 213-224
[6]  
Vinokurov V. R.(1969)Optimal Control of Processes Described by Integral Equations, Parts 1–3 SIAM Journal on Control 7 324-355
[7]  
Schmidt W. H.(1980)Notwendige Optimalitätsbedingungen für Prozesse mit Zeitvariablen Integralgleichungen in Banach-Räumen Zeitschrift für Angewandte Mathematik und Mechanik 60 595-608
[8]  
Schmidt W. H.(1981)Maximum Principles for Processes Governed by Integral Equations in Banach Spaces as Sufficient Optimality Conditions Beiträge zur Analysis 17 85-93
[9]  
Von Wolfersdorf L.(1976)Optimal Control of a Class of Processes Described by General Integral Equations of Hammerstein Type Mathematische Nachrichten 71 115-141
[10]  
Bittner L.(1975)Optimal Control of Processes Governed by Abstract Functional, Integral, and Hyperbolic Differential Equations Mathematische Operationsforschung und Statistik 6 107-134