Maximal distributional chaos of weighted shift operators on Köthe sequence spaces

被引:0
作者
Xinxing Wu
机构
[1] University of Electronic Science and Technology of China,School of Mathematics
来源
Czechoslovak Mathematical Journal | 2014年 / 64卷
关键词
weighted shift operator; principal measure; distributional chaos; 37D45; 54H20; 37B40; 26A18; 28D20;
D O I
暂无
中图分类号
学科分类号
摘要
During the last ten some years, many research works were devoted to the chaotic behavior of the weighted shift operator on the Köthe sequence space. In this note, a sufficient condition ensuring that the weighted shift operator Bwn: λp(A) → λp(A) defined on the Köthe sequence space λp(A) exhibits distributional ɛ-chaos for any 0 < ɛ < diamλp(A) and any n ∈ ℕ is obtained. Under this assumption, the principal measure of Bwn is equal to 1. In particular, every Devaney chaotic shift operator exhibits distributional ɛ-chaos for any 0 < ɛ < diam λp(A).
引用
收藏
页码:105 / 114
页数:9
相关论文
共 29 条
[1]  
Bermúdez T.(2011)Li-Yorke and distributionally chaotic operators J. Math. Anal. Appl. 373 83-93
[2]  
Bonilla A.(1999)A linear chaotic quantum harmonic oscillator Appl. Math. Lett. 12 15-19
[3]  
Martínez-Giménez F.(1975)Period three implies chaos Am. Math. Mon. 82 985-992
[4]  
Peris A.(2009)Distributional chaos for backward shifts J. Math. Anal. Appl. 351 607-615
[5]  
Duan J.(2007)Chaos for power series of backward shift operators Proc. Am. Math. Soc. 135 1741-1752
[6]  
Fu X.-C.(2007)Shift spaces and distributional chaos Chaos Solitons Fractals 31 347-355
[7]  
Liu P.-D.(2007)On some notions of chaos in dimension zero Colloq. Math. 107 167-177
[8]  
Manning A.(1994)Measures of chaos and a spectral decomposition of dynamical systems on the interval Trans. Am. Math. Soc. 344 737-754
[9]  
Li T. Y.(2000)Distributional (and other) chaos and its measurement Real Anal. Exch. 26 495-524
[10]  
Yorke J. A.(2004)Distributional chaos for triangular maps Chaos Solitons Fractals 21 1125-1128