Recognizing free generating sets of ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-groups

被引:0
作者
Daniele Mundici
机构
[1] University of Florence,Department of Mathematics and Computer Science “Ulisse Dini”
关键词
MV-algebra; McNaughton function; Free algebra; Equational class; Free generating set; -map; Baker–Beynon duality; Regular fan; Desingularization; Abelian ; -group; Decision problem; 06D35; 03B50; 03D10; 06B25; 06F20; 08B20; 08B30; 18B35; 20F10; 20F60; 20M05;
D O I
10.1007/s00012-018-0511-2
中图分类号
学科分类号
摘要
A classical theorem of Jónsson and Tarski provides a sufficient condition for a generating set of an algebra to be free generating. The special case of the theorem for MV-algebras can also be proved with the help of techniques that work for algebras outside the scope of the Jónsson–Tarski theorem, and yield the recognition of free generating sets of free n-generator lattice ordered abelian groups.
引用
收藏
相关论文
共 18 条
  • [1] Baker KA(1968)Free vector lattices Can. J. Math. 20 58-66
  • [2] Beynon WM(1974)Combinatorial aspects of piecewise linear functions J. Lond. Math. Soc. 7 719-727
  • [3] Beynon WM(1975)Duality theorems for finitely generated vector lattices Proc. Lond. Math. Soc. 3 114-128
  • [4] Beynon WM(1977)Applications of duality in the theory of finitely generated lattice-ordered abelian groups Can. J. Math. 29 243-254
  • [5] Cabrer L(2012)Rational polyhedra and projective lattice-ordered abelian groups with order unit Commun. Contemp. Math. 14 1250017-699
  • [6] Mundici D(2014)A Stone–Weierstrass theorem for MV-algebras and unital J. Logic Comput. 25 683-61
  • [7] Cabrer L(1984)-groups J. Lond. Math. Soc. 2 53-101
  • [8] Mundici D(1961)The word problem versus the isomorphism problem Math. Scand. 9 95-63
  • [9] Glass AMW(1986)On two properties of free algebras J. Funct. Anal. 65 15-1955
  • [10] Madden JJ(2003)Interpretation of AF Trans. Am. Math. Soc. 356 1937-1130