Connection between a class of polynomial optimization problems and maximum cliques of non-uniform hypergraphs

被引:0
作者
Yanming Chang
Yuejian Peng
Yuping Yao
机构
[1] Hunan University,College of Mathematics
来源
Journal of Combinatorial Optimization | 2016年 / 31卷
关键词
Hypergraph; Maximum clique; Polynomial optimization;
D O I
暂无
中图分类号
学科分类号
摘要
In 1965, Motzkin and Straus provided a connection between the order of a maximum clique in a graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} and a global solution of a quadratic optimization problem determined by G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} which is called the Lagrangian function of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}. This connection and its extensions have been useful in both combinatorics and optimization. In 2009, Rota Bulò and Pelillo extended the Motzkin–Straus result to r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-uniform hypergraphs by establishing a one-to-one correspondence between local (global) minimizers of a family of homogeneous polynomial functions of degree r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} (different from Lagrangian function) and the maximal (maximum) cliques of an r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-uniform hypergraph. In this paper, we study similar optimization problems related to non-uniform hypergraphs and obtain some extensions of their results to non-uniform hypergraphs. In particular, we provide a one-to-one correspondence between local (global) minimizers of a family of non-homogeneous polynomial functions and the maximal (maximum) cliques of {1,r}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1, r\}$$\end{document}-hypergraphs. An application of a main result gives an upper bound on the Turán density of complete {1,r}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1, r\}$$\end{document}-hypergraphs. The approach applied in the proof follows from the approach in Rota Bulò and Pelillo (2009).
引用
收藏
页码:881 / 892
页数:11
相关论文
共 24 条
[1]  
Bomze IM(1997)Evolution towards the maximum clique J Glob Optim 10 143-164
[2]  
Budinich M(2003)Exact bounds on the order of the maximum clique of a graph Discrete Appl Math 127 535-543
[3]  
Busygin S(2006)A new trust region technique for the maximum weight clique problem Discrete Appl Math 154 2080-2096
[4]  
Frankl P(1989)Extremal problems whose solutions are the blow-ups of the small Witt-designs J Comb Theory (A) 52 129-147
[5]  
Füredi Z(1984)Hypergraphs do not jump Combinatorica 4 149-159
[6]  
Frankl P(1997)Continuous characterizations of the maximum clique problem Math Oper Res 22 754-768
[7]  
Rödl V(1964)On a graph problem of Turán Mat Lapok 15 228-238
[8]  
Gibbons LE(1965)Maxima for graphs and a new proof of a theorem of Turán Can J Math 17 533-540
[9]  
Hearn DW(1990)A global optimization approach for solving the maximum clique problem Int J Comput Math 33 209-216
[10]  
Pardalos PM(2009)A generalization of the Motzkin–Straus theorem to hypergraph Optim Lett 3 287-295