The Generalized Volterra Integral Operator and Toeplitz Operator on Weighted Bergman Spaces

被引:0
作者
Juntao Du
Songxiao Li
Dan Qu
机构
[1] Guangdong University of Petrochemical Technology,Department of mathematics
[2] Shantou University,Department of Mathematics
[3] Macau University of Science and Technology,Faculty of Innovation Engineering
来源
Mediterranean Journal of Mathematics | 2022年 / 19卷
关键词
Bergman space; Volterra integral operator; Toeplitz operator; 30H20; 47B38; 47B35;
D O I
暂无
中图分类号
学科分类号
摘要
We study the boundedness and compactness of the generalized Volterra integral operator on weighted Bergman spaces with doubling weights on the unit disc. A generalized Toeplitz operator is defined and the boundedness, compactness and Schatten class membership of this operator are investigated on the Hilbert weighted Bergman space. As an application, Schatten class membership of generalized Volterra integral operators are also characterized. Finally, we also get the characterizations of Schatten class membership of generalized Toeplitz operator and generalized Volterra integral operators on the Hardy space H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2$$\end{document}.
引用
收藏
相关论文
共 45 条
[11]  
Pommerenke C(2007)Zero sequences, factorization and sampling measures for weighted Bergman spaces Bull. Belg. Math. Soc. Simon Stevin 14 621-628
[12]  
Rättyä J(2008)Riemann–Stieltjes operators on Hardy spaces in the unit ball of Bull. Belg. Math. Soc. Simon Stevin 15 677-686
[13]  
Hörmander L(1987)Riemann–Stieltjes operators between different weighted Bergman spaces J. Funct. Anal. 73 345-368
[14]  
Hu Z(2017)Trace ideal criteria for Toeplitz operator J. Math. Anal. Appl. 450 229-243
[15]  
Hu Z(2020)Essential norms of integration operators on weighted Bergman spaces J. Funct. Anal. 279 108564-176
[16]  
Lu J(2016)Volterra type integration operators from Bergman spaces to Hardy spaces J. Funct. Anal. 270 134-195
[17]  
Korhonen T(2013)Integration operators between Hardy spaces on the unit ball of Expo. Math. 31 169-239
[18]  
Rättyä J(2015)On the Littlewood-Paley Math. Ann. 362 205-643
[19]  
Li S(2016)-function and Calderón’s area theorem Adv. Math. 293 606-130
[20]  
Stevic S(2016)Embedding theorems for Bergman spaces via harmonic analysis J. Math. Pures Appl. 105 102-1237