The Generalized Volterra Integral Operator and Toeplitz Operator on Weighted Bergman Spaces

被引:0
作者
Juntao Du
Songxiao Li
Dan Qu
机构
[1] Guangdong University of Petrochemical Technology,Department of mathematics
[2] Shantou University,Department of Mathematics
[3] Macau University of Science and Technology,Faculty of Innovation Engineering
来源
Mediterranean Journal of Mathematics | 2022年 / 19卷
关键词
Bergman space; Volterra integral operator; Toeplitz operator; 30H20; 47B38; 47B35;
D O I
暂无
中图分类号
学科分类号
摘要
We study the boundedness and compactness of the generalized Volterra integral operator on weighted Bergman spaces with doubling weights on the unit disc. A generalized Toeplitz operator is defined and the boundedness, compactness and Schatten class membership of this operator are investigated on the Hilbert weighted Bergman space. As an application, Schatten class membership of generalized Volterra integral operators are also characterized. Finally, we also get the characterizations of Schatten class membership of generalized Toeplitz operator and generalized Volterra integral operators on the Hardy space H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2$$\end{document}.
引用
收藏
相关论文
共 45 条
[1]  
Aleman A(2001)An integral operator on J. Anal. Math. 85 157-176
[2]  
Cima J(1995) and Hardy’s inequality Complex Var. 28 149-158
[3]  
Aleman A(1997)An integral operator on Indiana Univ. Math. J. 46 337-356
[4]  
Siskakis A(2020)Integration operators on Bergman spaces Proc. Am. Math. Soc. 148 3325-3337
[5]  
Aleman A(2010)Generalized integration operators on Hardy spaces J. Math. Anal. Appl. 365 668-682
[6]  
Siskakis A(2016)Carleson embeddings and some classes of operators on weighted Bergman spaces J. Funct. Anal. 271 2899-2943
[7]  
Chalmoukis N(1967)Integral operators mapping into the space of bounded analytic functions Math. Scand. 20 65-78
[8]  
Constantin O(2004) estimates for (pluri-)subharmonic functions J. Math. Anal. Appl. 296 435-454
[9]  
Contreras M(2019)Extended Cesáro operators on Bergman spaces J. Geom. Anal. 29 3494-3519
[10]  
Peláez J(2019)Hankel operators on Bergman spaces with regular weights Math. Z. 291 1145-1173