Out-of-the-box parameter control for evolutionary and swarm-based algorithms with distributed reinforcement learning

被引:0
|
作者
Marcelo Gomes Pereira de Lacerda
Fernando Buarque de Lima Neto
Teresa Bernarda Ludermir
Herbert Kuchen
机构
[1] Universidade Federal de Pernambuco,Centro de Informática
[2] Universidade de Pernambuco,Escola Politécnica de Pernambuco
[3] Westfälische Wilhelms-Universität Münster,Institut für Wirtschaftsinformatik
来源
Swarm Intelligence | 2023年 / 17卷
关键词
Parameter control; Reinforcement learning; Swarm intelligence; Evolutionary algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
Parameter control methods for metaheuristics with reinforcement learning put forward so far usually present the following shortcomings: (1) Their training processes are usually highly time-consuming and they are not able to benefit from parallel or distributed platforms; (2) they are usually sensitive to their hyperparameters, which means that the quality of the final results is heavily dependent on their values; (3) and limited benchmarks have been used to assess their generality. This paper addresses these issues by proposing a methodology for training out-of-the-box parameter control policies for mono-objective non-niching evolutionary and swarm-based algorithms using distributed reinforcement learning with population-based training. The proposed methodology is suitable to be used in any mono-objective optimization problem and for any mono-objective and non-niching Evolutionary and swarm-based algorithm. The results in this paper achieved through extensive experiments show that the proposed method satisfactorily improves all the aforementioned issues, overcoming constant, random and human-designed policies in several different scenarios.
引用
收藏
页码:173 / 217
页数:44
相关论文
共 50 条
  • [1] Out-of-the-box parameter control for evolutionary and swarm-based algorithms with distributed reinforcement learning
    de Lacerda, Marcelo Gomes Pereira
    Neto, Fernando Buarque de Lima
    Ludermir, Teresa Bernarda
    Kuchen, Herbert
    SWARM INTELLIGENCE, 2023, 17 (03) : 173 - 217
  • [2] Towards a parameterless out-of-the-box population size control for evolutionary and swarm-based algorithms for single objective bound constrained real-parameter numerical optimization
    Pereira de Lacerda, Marcelo Gomes
    Amorim Neto, Hugo de Andrade
    Ludermir, Teresa Bernarda
    Kuchen, Herbert
    de Lima Neto, Fernando Buarque
    APPLIED SOFT COMPUTING, 2022, 123
  • [3] On the Learning Properties of Dueling DDQN in Parameter Control for Evolutionary and Swarm-based Algorithms
    Pereira de Lacerda, Marcelo Gomes
    de Lima Neto, Fernando Buarque
    Amorim Neto, Hugo De Andrade
    Kuchen, Herbert
    Ludermir, Teresa Bernarda
    2019 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2019, : 214 - 219
  • [4] A systematic literature review on general parameter control for evolutionary and swarm-based algorithms
    Pereira de Lacerda, Marcelo Gomes
    Pessoa, Luis Filipe de Araujo
    de Lima Neto, Fernando Buarque
    Ludermir, Teresa Bernarda
    Kuchen, Herbert
    SWARM AND EVOLUTIONARY COMPUTATION, 2021, 60
  • [5] Reinforcement learning for online control of evolutionary algorithms
    Eiben, A. E.
    Horvath, Mark
    Kowalczyk, Wojtek
    Schut, Martijn C.
    ENGINEERING SELF-ORGANISING SYSTEMS, 2007, 4335 : 151 - +
  • [6] Swarm Reinforcement Learning Algorithms Based on Particle Swarm Optimization
    Iima, Hitoshi
    Kuroe, Yasuaki
    2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 1109 - 1114
  • [7] Efficient, Swarm-Based Path Finding in Unknown Graphs Using Reinforcement Learning
    Aurangzeb, M.
    Lewis, F. L.
    Huber, M.
    2013 10TH IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2013, : 870 - 877
  • [8] EFFICIENT, SWARM-BASED PATH FINDING IN UNKNOWN GRAPHS USING REINFORCEMENT LEARNING
    Aurangzeb, Muhammad
    Lewis, Frank L.
    Huber, Manfred
    CONTROL AND INTELLIGENT SYSTEMS, 2014, 42 (03) : 238 - 246
  • [9] Deephive: A Reinforcement Learning Approach for Automated Discovery of Swarm-Based Optimization Policies
    Ikponmwoba, Eloghosa
    Owoyele, Opeoluwa
    ALGORITHMS, 2024, 17 (11)
  • [10] Swarm Reinforcement Learning Algorithms Based on Sarsa Method
    Iima, Hitoshi
    Kuroe, Yasuaki
    2008 PROCEEDINGS OF SICE ANNUAL CONFERENCE, VOLS 1-7, 2008, : 1963 - 1967