Blocked-Braid Groups

被引:0
作者
D. Maglia
N. Sabadini
R. F. C. Walters
机构
[1] Università dell’ Insubria,Dipartimento di Scienza e Alta Tecnologia
来源
Applied Categorical Structures | 2015年 / 23卷
关键词
Conjugacy Class; Symmetric Group; Braid Group; Monoidal Category; Surjective Homomorphism;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce and study a family of groups BBn, called the blocked-braid groups, which are quotients of Artin’s braid groups Bn, and have the corresponding symmetric groups Σn as quotients. They are defined by adding a certain class of geometrical modifications to braids. They arise in the study of commutative Frobenius algebras and tangle algebras in braided strict monoidal categories. A fundamental equation true in BBn is Dirac’s Belt Trick - that torsion through 4π is equal to the identity. We show that BBn is finite for n = 1, 2 and 3 but infinite for n > 3.
引用
收藏
页码:53 / 61
页数:8
相关论文
共 22 条
[1]  
Artin E(1947)Theory of braids Ann. Math. 48 101-126
[2]  
Carboni A(1987)Cartesian Bicategories, I J. Pure Appl. Algebra 49 11-32
[3]  
Walters RFC(1989)Braided compact monoidal categories with applications to low dimensional topology Adv. Math. 77 156-182
[4]  
Freyd P(1993)Braided monoidal categories Adv. Math. 102 20-78
[5]  
Yetter D(2000)On the algebra of systems with feedback and boundary Rendiconti del Circolo Matematico di Palermo Serie II, Suppl. 63 123-156
[6]  
Joyal A(2002)Feedback, trace and fixed-point semantics Theoret. Inform. Appl. 36 181-194
[7]  
Street RH(2004)Minimization and minimal realization in Span(Graph) MSCS 14 685-714
[8]  
Katis P(2005)Generic commutative separable algebras and cospans of graphs Theory Appl. Categ. 15 164-177
[9]  
Sabadini N(2012)Tangled circuits Theory Appl. Categ. 26 743-767
[10]  
Walters RFC(undefined)undefined undefined undefined undefined-undefined