Backward stochastic differential equations associated to a symmetric Markov process

被引:0
作者
Bally V. [1 ]
Pardoux E. [2 ]
Stoica L. [3 ]
机构
[1] Université du Maine, Faculté des Sciences, Lab. de Statistique et Processus, 72085, Le Mans Cedex 9, Av. Olivier Messiaen
[2] LATP/CMI, Université de Provence, 13 453 Marseille Cedex 13, 39, rue F. Joliot Curie
[3] Université de Bucarest, Fac. de Mathématiques, Bucarest, ro70109
关键词
Backward stochastic differential equations; Divergence form semilinear parabolic partial differential equations; Symmetric Markov processes;
D O I
10.1007/s11118-004-6457-3
中图分类号
学科分类号
摘要
We consider a second order semi-elliptic differential operator L with measurable coefficients, in divergence form, and the semilinear parabolic system of PDE's (∂t + L)u(t,x) + f(t,x,u,∇uσ) = 0, ∀0 ≤ t ≤ T, u(T,x) = Φ(x). We solve this system in the framework of Dirichlet spaces and employ the symmetric Markov process of infinitesimal operator L in order to obtain a precised version of the solution u by solving the corresponding system of backward stochastic differential equations. This precised version verifies pointwise the so called "mild equation", which is equivalent to the above PDE. As a technical ingrediend we prove a representation theorem for arbitrary martingales which generalises a result of Fukushima for martingale additive functionals. The nonlinear term f satisfies a monotonicity condition with respect to u and a Lipschitz condition with respect to ∇u. © Springer 2005.
引用
收藏
页码:17 / 60
页数:43
相关论文
共 14 条
[1]  
Bally V., Matoussi A., Stochastic PDE's and doubly stochastic backward differential equations, J. Theoret. Probab., 14, pp. 125-164, (2001)
[2]  
Barles G., Lesigne E., SDE, BSDE and PDE, Backward Stochastic Differential Equations, (1997)
[3]  
Blumenthal R.M., Getoor R.K., Markov Processes and Potential Theory
[4]  
Briand Ph., Delyon B., Hu Y., Pardoux E., Stoica L., L<sup>p</sup> solutions of backward stochastic differential equations, Stochastic Process. Appl., 108, pp. 109-129, (2003)
[5]  
Fukushima M., Oshima Y., Takeda M., Dirichlet Forms and Symmetric Markov Processes, (1994)
[6]  
El Karoui N., Backward stochastic differential equations a general introduction, Backward Stochastic Differential Equations, (1997)
[7]  
El Karoui N., Peng S., Quenez M.C., Backward stochastic differential equations in finance, Math. Finance, 7, pp. 1-71, (1997)
[8]  
Kato T., Schrödinger operators with singular potentials, Israel J. Math., 13, (1972)
[9]  
Ladyzenskaya O.A., Solonikov N.N., Uraltseva V.A., Linear and Quasilinear Equations of Parabolic Type, (1967)
[10]  
Lions J.L., Equations Différentielles Opérationnelles, (1961)