Processing and characterizations of a novel proton-conducting BaCe0.35Zr0.50Y0.15O3-δ electrolyte and its nickel-based anode composite for anode-supported IT-SOFC

被引:16
作者
Baral A.K. [1 ,2 ]
Choi S. [1 ]
Kim B.K. [1 ]
Lee J.-H. [1 ]
机构
[1] High Temperature Energy Materials Center, Korea Institute of Science and Technology, 39-1, Hawolgok-dong, Seongbuk-gu, Seoul
[2] Department of Chemistry, University of Calgary, 2500 University Dr NW, Calgary, T2N1N4, AB
基金
新加坡国家研究基金会;
关键词
Cell fabrication; Electrical conductivity; Proton conductor; SOFC;
D O I
10.1007/s40243-014-0035-4
中图分类号
学科分类号
摘要
This work presents the synthesis and characterizations of a stable and well-sinterable proton conductor BaCe0.35Zr0.50Y0.15O3-δ in which a transition of conductivity occurred steeply from the order of 10-3 to 10-2 S cm-1 and activation energy changed from 0.35 to 0.22 eV in the temperature range from 350 to 400 °C, due to the dissociation of protons from the dopant-proton defect pairs. The anode composite Ni-BaCe0.35 Zr0.50Y0.15O3-δ (40:60 vol%) prepared by liquid condensation process showed comparatively very high electrical conductivity than the existing solid oxide fuel cell (SOFC) anodes, in the temperature range of 350-800 °C. Fabrication (by screen printing and co-firing processes), performance and post-mortem analysis of anode-supported protonic SOFC cell using these materials are discussed elaborately. © 2014 The Author(s).
引用
收藏
相关论文
共 26 条
  • [1] Ma G., Shimura T., Iwahara H., Ionic conduction and nonstoichiometry in Ba <sub>x</sub> Ce<sub>0.90</sub>Y<sub>0.10</sub>O<sub>3-α</sub>, Solid State Ion., 110, pp. 103-110, (1998)
  • [2] Bohn H.G., Schober T., Electrical conductivity of the high-temperature proton conductor BaZr<sub>0.9</sub>Y<sub>0.1</sub>O<sub>2.95</sub>, J. Am. Ceram. Soc., 83, pp. 768-772, (2000)
  • [3] Park J.-S., Lee J.-H., Lee H.-W., Kim B.-K., Low temperature sintering of BaZrO<sub>3</sub>-based proton conductors for intermediate temperature solid oxide fuel cells, Solid State Ion., 181, pp. 163-167, (2010)
  • [4] Zakowsky N., Williamson S., Irvine J.T.S., Elaboration of CO<sub>2</sub> tolerance limits of BaCe<sub>0.9</sub>Y <sub>0.1</sub>O<sub>3-δ</sub> electrolytes for fuel cells and other applications, Solid State Ion., 176, pp. 3019-3026, (2005)
  • [5] Bhide S.V., Virkar A.V., Stability of BaCeO3-based proton conductors in water-containing atmospheres, J. Electrochem. Soc., 146, pp. 2038-2044, (1999)
  • [6] Katahira K., Kohchi Y., Shimura T., Iwahara H., Protonic conduction in Zr-substituted BaCeO<sub>3</sub>, Solid State Ion., 138, pp. 91-98, (2000)
  • [7] Fabbri E., D'Epifanio A., Bartolomeo E.D., Licoccia S., Traversa E., Tailoring the chemical stability of Ba(Ce<sub>0.8-x</sub> Zr <sub>x</sub> )Y<sub>0.2</sub>O<sub>3-δ</sub> protonic conductors for intermediate temperature solid oxide fuel cells (IT-SOFCs), Solid State Ion., 179, pp. 558-564, (2008)
  • [8] Kreuer K.D., Proton conducting oxides, Annu. Rev. Mater. Res., 33, pp. 333-359, (2003)
  • [9] Ricote S., Bonanos N., De Lucas M.C.M., Caboche G., Structural and conductivity study of the proton conductor BaCe<sub>(0.9-x)</sub>Zr <sub>x</sub> Y<sub>0.1</sub>O<sub>(3-δ)</sub> at intermediate temperatures, J. Power Sources, 193, pp. 189-193, (2009)
  • [10] Azad A.K., Irvine J.T.S., Synthesis, chemical stability and proton conductivity of the perovksites Ba(Ce, Zr)<sub>1-x</sub> Scx O<sub>3-δ</sub>, Solid State Ion., 178, pp. 635-640, (2007)