Functional Inequalities Involving Numerical Differentiation Formulas of Order Two

被引:0
作者
Tomasz Szostok
机构
[1] University of Silesia,Institute of Mathematics
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2018年 / 41卷
关键词
Hermite–Hadamard inequality; Differentiation formulas; Convex functions; 26A51; 26D10; 39B62;
D O I
暂无
中图分类号
学科分类号
摘要
We write expressions connected with numerical differentiation formulas of order 2 in the form of Stieltjes integral, then we use Ohlin lemma and Levin–Stechkin theorem to study inequalities connected with these expressions. In particular, we present a new proof of the inequality fx+y2≤1(y-x)2∫xy∫xyfs+t2dsdt≤1y-x∫xyf(t)dt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} f\left( \frac{x+y}{2}\right) \le \frac{1}{(y-x)^2} \int _x^y\int _x^yf\left( \frac{s+t}{2}\right) \hbox {d}s\,\hbox {d}t \le \frac{1}{y-x}\int _x^yf(t)\hbox {d}t \end{aligned}$$\end{document}satisfied by every convex function f:R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f{:}\,\mathbb R\rightarrow \mathbb R$$\end{document} and we obtain extensions of this inequality. Then we deal with non-symmetric inequalities of a similar form.
引用
收藏
页码:2053 / 2066
页数:13
相关论文
共 15 条
  • [1] Bessenyei M(2010)Characterization of higher order monotonicity via integral inequalities Proc. R. Soc. Edinb. Sect. A 140 723-736
  • [2] Páles Zs(1998)The s-convex orders among real random variables, with applications Math. Inequal. Appl. 1 585-613
  • [3] Denuit M(1992)Two mappings in connection to Hadamard’s inequalities J. Math. Anal. Appl. 1 49-56
  • [4] Lefevre C(2012)Some new bounds for two mappings related to the Hermite–Hadamard inequality for convex functions Numer. Algebra Control Optim. 2 271-278
  • [5] Shaked M(1960)Inequalities Am. Math. Soc. Transl. 14 1-29
  • [6] Dragomir SS(1969)On a class of measures of dispersion with application to optimal reinsurance ASTIN Bull. 5 249-266
  • [7] Dragomir SS(2015)Inequalities of the Hermite–Hadamard type involving numerical differentiation formulas Results Math. 67 403-416
  • [8] Gomm I(2014)On the Ohlin lemma for Hermite–Hadamard–Fejer type inequalities Math. Inequal. Appl. 17 557-571
  • [9] Levin VI(2015)Ohlin’s lemma and some inequalities of the Hermite–Hadamard type Aequ. Math. 89 915-926
  • [10] Stečkin SB(undefined)undefined undefined undefined undefined-undefined