The X-Ray Transform on a Generic Family of Smooth Curves

被引:0
作者
Yang Zhang
机构
[1] University of Washington Seattle,
来源
The Journal of Geometric Analysis | 2023年 / 33卷
关键词
X-ray transform; A generic family of smooth curves; Conjugate points; Artifacts; 35R30; 44A12; 44A05; 65R10;
D O I
暂无
中图分类号
学科分类号
摘要
We study the X-ray transform over a generic family of smooth curves in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^2$$\end{document} with a Riemannian metric g. We show that the singularities cannot be recovered from local data in the presence of conjugate points, and therefore artifacts may arise in the reconstruction. We perform numerical experiments to illustrate the results.
引用
收藏
相关论文
共 43 条
[1]  
Dairbekov NS(2007)The boundary rigidity problem in the presence of a magnetic field Adv. Math. 216 535-609
[2]  
Paternain GP(1927)The general geometry of paths Ann. Math. 5 143-168
[3]  
Stefanov P(2007)The X-ray transform for a generic family of curves and weights J. Geometr. Anal. 18 89-108
[4]  
Uhlmann G(2017)The X-ray transform on a general family of curves on Finsler surfaces J. Geometr. Anal. 28 1428-1455
[5]  
Douglas J(2013)The attenuated magnetic ray transform on surfaces Inverse Probl. Imaging 7 85-1529
[6]  
Frigyik B(2017)Injectivity and stability for a generic class of generalized Radon transforms J. Geom. Anal. 27 1515-1778
[7]  
Stefanov P(2018)The local magnetic ray transform of tensor fields SIAM J. Math. Anal. 50 1753-702
[8]  
Uhlmann G(2010)Remarks on the general funk transform and thermoacoustic tomography Inverse Probl. Imaging 4 693-242
[9]  
Assylbekov YM(2017)Motion estimation and correction in photoacoustic tomographic reconstruction SIAM J. Imaging Sci. 10 216-1612
[10]  
Dairbekov NS(2020)Recovery of singularities for the weighted cone transform appearing in Compton camera imaging Inverse Probl. 36 064001-260