Inverse spectral reconstruction problem for the convolution operator perturbed by a one-dimensional operator

被引:0
|
作者
S. A. Buterin
机构
[1] N. G. Chernyshevskii Saratov State University,
来源
Mathematical Notes | 2006年 / 80卷
关键词
inverse spectral reconstruction problem; convolution operator; nonlinear integral equation; Fredholm alternative; Hilbert-Schmidt operator;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a one-dimensional perturbation of the convolution operator. We study the inverse reconstruction problem for the convolution component using the characteristic numbers under the assumption that the perturbation summand is known a priori. The problem is reduced to the solution of the so-called basic nonlinear integral equation with singularity. We prove the global solvability of this nonlinear equation. On the basis of these results, we prove a uniqueness theorem and obtain necessary and sufficient conditions for the solvability of the inverse problem.
引用
收藏
页码:631 / 644
页数:13
相关论文
共 50 条
  • [1] Inverse spectral reconstruction problem for the convolution operator perturbed by a one-dimensional operator
    Buterin, S. A.
    MATHEMATICAL NOTES, 2006, 80 (5-6) : 631 - 644
  • [2] Inverse Spectral Problem for the One-Dimensional Stark Operator on the Semiaxis
    A. R. Latifova
    A. Kh. Khanmamedov
    Ukrainian Mathematical Journal, 2020, 72 : 568 - 584
  • [3] On the Inverse Spectral Problem for the One-dimensional Stark Operator on the Semiaxis
    Khanmamedov, A. Kh.
    Huseynova, Y. I.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2024, 14 (01): : 122 - 132
  • [4] Inverse Spectral Problem for the One-Dimensional Stark Operator on the Semiaxis
    Latifova, A. R.
    Khanmamedov, A. Kh.
    UKRAINIAN MATHEMATICAL JOURNAL, 2020, 72 (04) : 568 - 584
  • [5] Inverse Spectral Problem of Teconstructing One-dimensional Perturbation of Integral Volterra Operator
    Buterin, S. A.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2006, 6 (01): : 3 - 11
  • [6] THE DIRECT AND INVERSE SCATTERING PROBLEMS FOR THE ONE-DIMENSIONAL PERTURBED HILL OPERATOR
    FIRSOVA, NE
    MATHEMATICS OF THE USSR-SBORNIK, 1986, 130 (3-4): : 351 - 388
  • [7] Optimization Inverse Spectral Problem for the One-Dimensional Schrodinger Operator on the Entire Real Line
    Sadovnichii, V. A.
    Sultanaev, Ya. T.
    Valeev, N. F.
    DIFFERENTIAL EQUATIONS, 2024, 60 (04) : 465 - 471
  • [8] Spectrum of One-Dimensional Potential Perturbed by a Small Convolution Operator: General Structure
    Borisov, D. I.
    Piatnitski, A. L.
    Zhizhina, E. A.
    MATHEMATICS, 2023, 11 (19)
  • [9] HOMOGENIZATION OF A ONE-DIMENSIONAL SPECTRAL PROBLEM FOR A SINGULARLY PERTURBED ELLIPTIC OPERATOR WITH NEUMANN BOUNDARY CONDITIONS
    Allaire, Gregoire
    Capdeboscq, Yves
    Puel, Marjolaine
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (01): : 1 - 31
  • [10] On an Inverse Spectral Problem for a Convolution Integro-differential Operator
    Sergey Alexandrovich Buterin
    Results in Mathematics, 2007, 50 : 173 - 181