The affine connection in the normal coordinates

被引:0
作者
Gavrilov A.V. [1 ]
机构
[1] Siberian Independent Institute, Novosibirsk
基金
俄罗斯基础研究基金会;
关键词
affine connection; composition of exponential maps; normal coordinates;
D O I
10.3103/S105513441301001X
中图分类号
学科分类号
摘要
We propose a method to calculate the derivatives of the Christoffel symbols in the normal coordinates on a smooth manifold with symmetric affine connection. As an application, we construct an algorithm for computing the Taylor series of the double exponential map. © 2013 Allerton Press, Inc.
引用
收藏
页码:1 / 19
页数:18
相关论文
共 8 条
[1]  
Gavrilov A.V., Algebraic properties of covariant derivative and composition of exponential maps, Mat. Tr., 9, 1, pp. 3-20, (2006)
[2]  
Gavrilov A.V., The double exponential map and covariant derivation, Sibirsk. Mat. Zh., 48, 1, pp. 68-74, (2007)
[3]  
Gavrilov A.V., Higher covariant derivatives, Sibirsk. Mat. Zh., 49, 6, pp. 1250-1262, (2008)
[4]  
Gavrilov A.V., Commutation relations on the covariant derivative, J. Algebra, 323, 2, pp. 517-521, (2010)
[5]  
Gavrilov A.V., The Leibniz formula for the covariant derivative and some of its applications, Mat. Tr., 13, 1, pp. 63-84, (2010)
[6]  
Kobayashi S., Nomizu K., Foundations of Differential Geometry. Vol. II, (1969)
[7]  
Sharafutdinov V.A., Geometric symbol calculus for pseudodifferential operators. I
[8]  
II, Mat. Tr., 7, 2, pp. 159-206, (2004)