Machine Learning-Based 3D Modeling of Mineral Prospectivity Mapping in the Anqing Orefield, Eastern China

被引:0
作者
Yaozu Qin
Liangming Liu
Weicheng Wu
机构
[1] East China University of Technology,Key Laboratory of Digital Land and Resources, Faculty of Earth Sciences
[2] Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring of Education Ministry,Computational Geosciences Research Centre, School of Geoscience and Info
[3] Central South University,Physics
来源
Natural Resources Research | 2021年 / 30卷
关键词
Geological predictive factor; Anqing orefield; Weight of evidence; Random forest; Mineral prospectivity mapping;
D O I
暂无
中图分类号
学科分类号
摘要
Actual geological data, accurate models and precise samples are critical for ore targeting.The RF-based prediction model is more applicable for mapping mineral prospectivity than other algorithms in this study.The determination of sample set is more important than algorithm if there is not enough field data.
引用
收藏
页码:3099 / 3120
页数:21
相关论文
共 48 条
[41]   Radiation pneumonitis prediction after stereotactic body radiation therapy based on 3D dose distribution: dosiomics and/or deep learning-based radiomics features [J].
Ying Huang ;
Aihui Feng ;
Yang Lin ;
Hengle Gu ;
Hua Chen ;
Hao Wang ;
Yan Shao ;
Yanhua Duan ;
Weihai Zhuo ;
Zhiyong Xu .
Radiation Oncology, 17
[42]   Resource prediction and assessment based on 3D/4D big data modeling and deep integration in key ore districts of North China [J].
Gongwen Wang ;
Zhiqiang Zhang ;
Ruixi Li ;
Junjian Li ;
Deming Sha ;
Qingdong Zeng ;
Zhenshan Pang ;
Dapeng Li ;
Leilei Huang .
Science China Earth Sciences, 2021, 64 :1590-1606
[43]   Resource prediction and assessment based on 3D/4D big data modeling and deep integration in key ore districts of North China [J].
Wang, Gongwen ;
Zhang, Zhiqiang ;
Li, Ruixi ;
Li, Junjian ;
Sha, Deming ;
Zeng, Qingdong ;
Pang, Zhenshan ;
Li, Dapeng ;
Huang, Leilei .
SCIENCE CHINA-EARTH SCIENCES, 2021, 64 (09) :1590-1606
[44]   3D Au Targeting using Machine Learning with Different Sample Combination and Return-Risk Analysis in the Sanshandao-Cangshang District, Shandong Province, China [J].
Meng Gao ;
Gongwen Wang ;
Emmanuel John M. Carranza ;
Siyan Qi ;
Wen Zhang ;
Zhenshan Pang ;
Xiuzhang Li ;
Fengli Xiao .
Natural Resources Research, 2024, 33 :51-74
[45]   3D Au Targeting using Machine Learning with Different Sample Combination and Return-Risk Analysis in the Sanshandao-Cangshang District, Shandong Province, China [J].
Gao, Meng ;
Wang, Gongwen ;
Carranza, Emmanuel John M. ;
Qi, Siyan ;
Zhang, Wen ;
Pang, Zhenshan ;
Li, Xiuzhang ;
Xiao, Fengli .
NATURAL RESOURCES RESEARCH, 2024, 33 (01) :51-74
[46]   Assessment of BIPV power generation potential at the city scale based on local climate zones: Combining physical simulation, machine learning and 3D building models [J].
Tang, Haida ;
Chai, Xingkang ;
Chen, Jiayu ;
Wan, Yang ;
Wang, Yuqin ;
Wan, Wei ;
Li, Chunying .
RENEWABLE ENERGY, 2025, 244
[47]   Bagging-based Positive–Unlabeled Data Learning Algorithm with Base Learners Random Forest and XGBoost for 3D Exploration Targeting in the Kalatongke District, Xinjiang, China [J].
Meng Gao ;
Gongwen Wang ;
Wangdong Yang ;
Zhiqiang Zhang ;
Dingzhou Cai ;
Yunchou Xu ;
Shuren Yang .
Natural Resources Research, 2023, 32 :437-459
[48]   Bagging-based Positive-Unlabeled Data Learning Algorithm with Base Learners Random Forest and XGBoost for 3D Exploration Targeting in the Kalatongke District, Xinjiang, China [J].
Gao, Meng ;
Wang, Gongwen ;
Yang, Wangdong ;
Zhang, Zhiqiang ;
Cai, Dingzhou ;
Xu, Yunchou ;
Yang, Shuren .
NATURAL RESOURCES RESEARCH, 2023, 32 (02) :437-459