Local estimates for parabolic equations with nonlinear gradient terms

被引:0
作者
Tommaso Leonori
Francesco Petitta
机构
[1] Universidad de Granada,Departamento de Análisis Matemático
[2] Universitat de Valencia,Departamento de Análisis Matemático
来源
Calculus of Variations and Partial Differential Equations | 2011年 / 42卷
关键词
35K60; 35D05; 35D10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we deal with local estimates for parabolic problems in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^N}$$\end{document} with absorbing first order terms, whose model is\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{\begin{array}{l@{\quad}l}u_t- \Delta u +u |\nabla u|^q = f(t,x) \quad &{\rm in}\, (0,T) \times \mathbb{R}^N\,,\\u(0,x)= u_0 (x) &{\rm in}\, \mathbb{R}^N \,,\quad\end{array}\right.$$\end{document}where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T >0 , \, N\geq 2,\, 1 < q \leq 2,\, f(t,x)\in L^1\left( 0,T; L^1_{\rm loc} \left(\mathbb{R}^N\right)\right)}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u_0\in L^1_{\rm loc}\left(\mathbb{R}^{N}\right)}$$\end{document}.
引用
收藏
页码:153 / 187
页数:34
相关论文
共 57 条
[1]  
Al Sayed W.(2009)On uniqueness of large solutions of nonlinear parabolic equations in nonsmooth domains Adv. Nonlinear Stud. 9 149-164
[2]  
Veron L.(1994)Solutions d’équations de réaction-diffusion non linéaires explosant au bord parabolique C. R. Acad. Sci. Paris Sér. I Math. 318 455-460
[3]  
Bandle C.(1992)Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior J. Anal. Math. 58 9-24
[4]  
Diaz G.(1995)An Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 241-273
[5]  
Diaz J.I.(1997)−theory of existence and uniqueness of nonlinear elliptic equations Proc. Roy. Soc. Edinburgh Sect. A 127 1137-1152
[6]  
Bandle C.(1989)Renormalised solutions of nonlinear parabolic problems with J. Funct. Anal. 87 149-169
[7]  
Marcus M.(1993) data: existence and uniqueness J. Differ. Equ. 105 334-363
[8]  
Bénilan P.(2001)Nonlinear elliptic and parabolic equations involving measure data Electron. J. Differ. Equ. 60 1-20
[9]  
Boccardo L.(1992)Nonlinear elliptic equations in SIAM J. Math. Anal. 23 326-333
[10]  
Gallouët T.(2009) without growth conditions on the data Nonlinear Anal. 71 978-990