Pauli-Fierz mass term in modified Plebanski gravity

被引:0
作者
David Beke
Giovanni Palmisano
Simone Speziale
机构
[1] Ghent University,Department of Mathematical Analysis EA16
[2] Università “La Sapienza”,Dipartimento di Fisica
[3] Aix-Marseille University,Centre de Physique Théorique
[4] CNRS-UMR 7332,undefined
来源
Journal of High Energy Physics | / 2012卷
关键词
Classical Theories of Gravity; Models of Quantum Gravity;
D O I
暂无
中图分类号
学科分类号
摘要
We study SO(4) BF theory plus a general quadratic potential, which describes a bi-metric theory of gravity. We identify the profile of the potential leading to a Pauli-Fierz mass term for the massive graviton, thereby avoiding the linearized ghost. We include the Immirzi parameter in our analysis, and find that the mass of the second graviton depends on it. At the non-perturbative level, we find a situation similar to genuine bi-gravities: even choosing the Pauli-Fierz mass term, the ghost mode propagates through the interactions. We present some simple potentials leading to two and three degrees of freedom, and discuss the difficulties of finding a ghost-free bi-gravity with seven degrees of freedom. Finally, we discuss alternative reality conditions for the case of SO(3,1) BF theory, relevant for Lorentzian signature, and give a new solution to the compatibility equation.
引用
收藏
相关论文
共 102 条
[1]  
Plebanski JF(1977)On the separation of Einsteinian substructures J. Math. Phys. 18 2511-undefined
[2]  
Capovilla R(1991)Selfdual two forms and gravity Class. Quant. Grav. 8 41-undefined
[3]  
Jacobson T(1995)New constraints for canonical general relativity Nucl. Phys. B 457 643-undefined
[4]  
Dell J(1999)SO(4) Plebanski action and relativistic spin foam model Class. Quant. Grav. 16 2187-undefined
[5]  
Mason L(1986)New variables for classical and quantum gravity Phys. Rev. Lett. 57 2244-undefined
[6]  
Reisenberger MP(2000)An introduction to spin foam models of quantum gravity and BF theory Lect. Notes Phys. 543 25-undefined
[7]  
De Pietri R(2002)Spin foam quantization of SO(4) Plebanski’s action Adv. Theor. Math. Phys. 5 947-undefined
[8]  
Freidel L(2010)Bi-metric theory of gravity from the non-chiral Plebanski action Phys. Rev. D 82 064003-undefined
[9]  
Ashtekar A(2008)Non-metric gravity. I. Field equations Class. Quant. Grav. 25 025001-undefined
[10]  
Baez JC(2008)Non-metric gravity. II. Spherically symmetric solution, missing mass and redshifts of quasars Class. Quant. Grav. 25 025002-undefined