Some evaluation of q-analogues of Euler sums

被引:0
作者
Ce Xu
Mingyu Zhang
Weixia Zhu
机构
[1] Xiamen University,School of Mathematical Sciences
来源
Monatshefte für Mathematik | 2017年 / 182卷
关键词
q-Polylogarithm function; q-Euler sums; q-Riemann zeta function; 05A30; 65B10; 33D05; 11M99; 11M06; 11M32; 33B15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we discuss the analytic representations of q-Euler sums which involve q-harmonic numbers through q-polylogarithms, either linearly or nonlinearly, and give explicit formulae for several classes of q-Euler sums in terms of q-polylogarithms and q-special functions. Furthermore, we develop new closed form representations of sums of quadratic and cubic parametric q-Euler sums. Finally, we can find that the q-Euler sums are reducible to the classical Euler sums when q approaches 1.
引用
收藏
页码:957 / 975
页数:18
相关论文
共 44 条
[1]  
Dilcher K(2014)On q-analogues of double Euler sums J. Math. Anal. Appl. 2 979-988
[2]  
Pilehrood KH(1994)Experimental evaluation of Euler sums Exp Math. 3 17-30
[3]  
Pilehrood TH(2014)Computation and theory of extended Mordell–Tornheim–Witten sums Math. Comp. 83 1795-1821
[4]  
Bailey DH(2004)Variational q-calculus J. Math. Anal. 289 650-665
[5]  
Borwein JM(2006)Thirty-two goldbach variations Int. J. Num. Theory. 2 65-103
[6]  
Girgensohn R(2008)Parametric Euler sum identities J. Math. Anal. Appl. 316 328-338
[7]  
Bailey DH(1995)Explicit evaluation of Euler sums Proc. Edinburgh Math. 38 277-294
[8]  
Borwein JM(1996)Making sense of experimental mathematics Math Intell. 18 12-18
[9]  
Crandall RE(2001)Special values of multiple polylogarithms Trans. Amer. Math. Soc. 353 907-941
[10]  
Bangerezako G(2008)The evaluation of character Euler double sums Ramanujan J. 15 377-405