Ricci solitons in Sasakian manifold

被引:3
作者
Baishya K.K. [1 ]
机构
[1] Department of Mathematics, Kurseong College, Dowhill Road, Kurseong, Darjeeling, 734203, West Bengal
关键词
Quasi-conformal like curvature tensor; Ricci solitons shrinking; steady and expanding; Sasakian manifold;
D O I
10.1007/s13370-017-0502-z
中图分类号
学科分类号
摘要
Recently the present author introduced the notion of generalized quasi-conformal curvature tensor which bridges conformal curvature tensor, concircular curvature tensor, projective curvature tensor and conharmonic curvature tensor. The object of the present paper is to find out curvature conditions for which Ricci solitons in Sasakian manifolds are sometimes shrinking and some other time remain expanding. © 2017, African Mathematical Union and Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:1061 / 1066
页数:5
相关论文
共 25 条
[1]  
Yano K., Sawaki S., Riemannian manifolds admitting a conformal transformation group, J. Differ. Geom., 2, pp. 161-184, (1968)
[2]  
Baishya K.K., Chowdhury P.R., On generalized quasi-conformal N(k, μ) -manifolds, Commun. Korean Math. Soc., 31, 1, pp. 163-176, (2016)
[3]  
Eisenhart L.P., Riemannian Geometry, (1949)
[4]  
Ishii Y., On conharmonic transformations, Tensor (N.S.), 7, pp. 73-80, (1957)
[5]  
Yano K., Bochner S., Curvature and Betti Numbers. Annals of Mathematics Studies, (1953)
[6]  
Pokhariyal G.P., Mishra R.S., Curvature tensors and their relativistics significance. I, Yokohama Math. J., 18, pp. 105-108, (1970)
[7]  
Ghosh A., Sharma R., Cho J.T., Contact metric manifolds with η -parallel torsion tensor, Ann. Glob. Anal. Geom., 34, 3, pp. 287-299, (2008)
[8]  
Sharma R., Certain results on K-contact and (k, μ)-contact manifolds, J. Geom., 89, pp. 138-147, (2008)
[9]  
Chow B., Lu P., Ni L., Hamilton’s Ricci Flow, Graduate Studies in Mathematics, (2006)
[10]  
Bejan C.L., Crasmareanu M., Ricci solitons in manifolds with quasi-constant curvature, Publ. Math. Debr., 78, 1, pp. 235-243, (2011)