Criterion for Lyapunov stability of periodic Camassa–Holm equations

被引:0
|
作者
Feng Cao
Jifeng Chu
Ke Jiang
机构
[1] Nanjing University of Aeronautics and Astronautics,Department of Mathematics
[2] MIIT,Key Laboratory of Mathematical Modelling and High Performance Computing of Air Vehicles (NUAA)
[3] Shanghai Normal University,Department of Mathematics
[4] Guizhou University,School of Mathematics and Statistics
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2023年 / 202卷
关键词
Camassa–Holm equation; Lyapunov stability; Eigenvalues; Lyapunov-type criterion; Primary 34D20; 34L15;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Lyapunov stability of the periodic Camassa–Holm equation in terms of the periodic/anti-periodic eigenvalues and the associated spectral intervals. We consider the case with definite potentials as well as the case with indefinite potentials. In particular, we prove a Lyapunov-type stability criterion.
引用
收藏
页码:1557 / 1572
页数:15
相关论文
共 50 条
  • [1] Criterion for Lyapunov stability of periodic Camassa-Holm equations
    Cao, Feng
    Chu, Jifeng
    Jiang, Ke
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (04) : 1557 - 1572
  • [2] A NEW LYAPUNOV STABILITY CRITERION OF PERIODIC CAMASSA-HOLM EQUATIONS
    Jiang, Ke
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2025,
  • [3] Lyapunov-type stability criterion for periodic generalized Camassa-Holm equations
    Jiang, Ke
    Cao, Feng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 74
  • [4] Stability for the periodic Camassa-Holm equation
    Lenells, J
    MATHEMATICA SCANDINAVICA, 2005, 97 (02) : 188 - 200
  • [5] Orbital Stability of Periodic Peakons to a Generalized μ-Camassa–Holm Equation
    Changzheng Qu
    Ying Zhang
    Xiaochuan Liu
    Yue Liu
    Archive for Rational Mechanics and Analysis, 2014, 211 : 593 - 617
  • [6] Stability of periodic peakons for the modified μ-Camassa-Holm equation
    Liu, Yue
    Qu, Changzheng
    Zhang, Ying
    PHYSICA D-NONLINEAR PHENOMENA, 2013, 250 : 66 - 74
  • [7] Stability of smooth periodic travelling waves in the Camassa-Holm equation
    Geyer, A.
    Martins, Renan H.
    Natali, Fabio
    Pelinovsky, Dmitry E.
    STUDIES IN APPLIED MATHEMATICS, 2022, 148 (01) : 27 - 61
  • [9] Orbital stability of floating periodic peakons for the Camassa-Holm equation
    Yin, Jiuli
    Tian, Lixin
    Fan, Xinghua
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) : 4021 - 4026
  • [10] Orbital Stability of Periodic Peakons to a Generalized μ-Camassa-Holm Equation
    Qu, Changzheng
    Zhang, Ying
    Liu, Xiaochuan
    Liu, Yue
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 211 (02) : 593 - 617