Discrete Nonholonomic Lagrangian Systems on Lie Groupoids

被引:0
作者
David Iglesias
Juan C. Marrero
David Martín de Diego
Eduardo Martínez
机构
[1] Consejo Superior de Investigaciones Científicas,Instituto de Matemáticas y Física Fundamental
[2] Universidad de la Laguna,Departamento de Matemática Fundamental, Facultad de Matemáticas
[3] Universidad de Zaragoza,Departamento de Matemática Aplicada and IUMA, Facultad de Ciencias
来源
Journal of Nonlinear Science | 2008年 / 18卷
关键词
Discrete Mechanics; Nonholonomic Mechanics; Lie groupoids; Lie algebroids; Reduction; Nonholonomic momentum map; 17B66; 22A22; 37J60; 37M15; 70F25;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the construction of geometric integrators for nonholonomic systems. We develop a formalism for nonholonomic discrete Euler–Lagrange equations in a setting that permits to deduce geometric integrators for continuous nonholonomic systems (reduced or not). The formalism is given in terms of Lie groupoids, specifying a discrete Lagrangian and a constraint submanifold on it. Additionally, it is necessary to fix a vector subbundle of the Lie algebroid associated to the Lie groupoid. We also discuss the existence of nonholonomic evolution operators in terms of the discrete nonholonomic Legendre transformations and in terms of adequate decompositions of the prolongation of the Lie groupoid. The characterization of the reversibility of the evolution operator and the discrete nonholonomic momentum equation are also considered. Finally, we illustrate with several classical examples the wide range of application of the theory (the discrete nonholonomic constrained particle, the Suslov system, the Chaplygin sleigh, the Veselova system, the rolling ball on a rotating table and the two wheeled planar mobile robot).
引用
收藏
页码:221 / 276
页数:55
相关论文
共 75 条
  • [1] Bates L.(1992)Nonholonomic reduction Rep. Math. Phys. 32 99-115
  • [2] Śniatycki J.(1996)Nonholonomic mechanical systems with symmetry Arch. Rational Mech. Anal. 136 21-99
  • [3] Bloch A.M.(1999)Discrete Lagrangian reduction, discrete Euler-Poincaré equations, and semidirect products Lett. Math. Phys. 49 79-93
  • [4] Krishnaprasad P.S.(1999)Discrete time Lagrangian mechanics on Lie groups, with an application to the Lagrange top Commun. Math. Phys. 204 147-188
  • [5] Marsden J.E.(1998)Reduction of nonholonomic mechanical systems with symmetries Rep. Math. Phys. 42 25-45
  • [6] Murray R.M.(1999)Reduction of constrained systems with symmetries J. Math. Phys. 40 795-820
  • [7] Bobenko A.I.(1987)Grupoïdes symplectiques Publ. Dép. Math. Lyon A 2 1-62
  • [8] Suris Y.B.(2001)Nonholonomic integrators Nonlinearity 14 1365-1392
  • [9] Bobenko A.I.(2004)Mechanical control systems on Lie algebroids IMA J. Math. Control. Inf. 21 457-492
  • [10] Suris Y.B.(1996)On the geometry of non-holonomic Lagrangian systems J. Math. Phys. 37 3389-3414