Complexities of normal bases constructed from Gauss periods

被引:0
作者
Xiang-Dong Hou
机构
[1] University of South Florida,Department of Mathematics and Statistics
来源
Designs, Codes and Cryptography | 2018年 / 86卷
关键词
Cyclotomic number; Gauss period; Finite field; Normal basis; 11T22; 11T30; 13P15;
D O I
暂无
中图分类号
学科分类号
摘要
Let q be a power of a prime p, and let r=nk+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=nk+1$$\end{document} be a prime such that r∤q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\not \mid q$$\end{document}, where n and k are positive integers. Under a simple condition on q, r and k, a Gauss period of type (n, k) is a normal element of Fqn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{q}^{n}$$\end{document} over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q$$\end{document}; the complexity of the resulting normal basis of Fqn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{q}^{n}$$\end{document} over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q$$\end{document} is denoted by C(n, k; p). Recent works determined C(n, k; p) for k≤7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\le 7$$\end{document} and all qualified n and q. In this paper, we show that for any given k>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k>0$$\end{document}, C(n, k; p) is given by an explicit formula except for finitely many primes r=nk+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=nk+1$$\end{document} and the exceptional primes are easily determined. Moreover, we describe an algorithm that allows one to compute C(n, k; p) for the exceptional primes r=nk+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=nk+1$$\end{document}. Our numerical results cover C(n, k; p) for k≤20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\le 20$$\end{document} and all qualified n and q.
引用
收藏
页码:893 / 905
页数:12
相关论文
共 21 条
  • [1] Acharya VV(1995)Cyclotomic numbers of orders Acta Arith. 69 51-74
  • [2] Katre SA(1967), Math. Comput. 21 204-219
  • [3] Baumert LD(2012) an odd prime Des. Codes Cryptogr. 62 43-62
  • [4] Fredricksen H(1935)The cyclotomic number of order eighteen with applications to difference sets Am. J. Math. 57 391-424
  • [5] Christopoulou M(2000)Gauss periods as constructions of low complexity normal bases J. Symb. Comput. 29 879-889
  • [6] Garefalakis T(1985)Cyclotomy, higher congruences, and Waring’s problem Acta Arith. 45 183-199
  • [7] Panario D(2014)Algorithms for exponentiation in finite fields Acta Math. Sin. 57 863-874
  • [8] Thomson D(2011)Complete solution of the cyclotomic problem in Acta Arith. 147 33-49
  • [9] Dickson LE(1990) for any prime modulus Bayreuth. Math. Schr. 31 155-164
  • [10] Gao S(1960)An explicit formula for the complexity of a class of Gauss period normal bases over finite fields (in Chinese) Acta Arith. 6 53-76