Effect of A Site and Oxygen Vacancies on the Structural and Electronic Properties of Lead-Free KTa0.5Nb0.5O3 Crystal

被引:0
作者
Wenlong Yang
Li Wang
Jiaqi Lin
Xiaokang Li
Hanjiang Xiu
Yanqing Shen
机构
[1] Harbin University of Science and Technology,Department of Applied Science
[2] Harbin University of Science and Technology,Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education
[3] Harbin Institute of Technology,Department of Physics
来源
Journal of Electronic Materials | 2016年 / 45卷
关键词
KTa; Nb; O; first principle; vacancies; electronic properties;
D O I
暂无
中图分类号
学科分类号
摘要
The structural and electronic properties of lead-free potassium tantalite niobate KTa0.5Nb0.5O3 (KTN) with A site vacancies VK0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ V_{\rm{K}}^{0} $$\end{document}, VK1-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ V_{\rm{K}}^{1 - } $$\end{document} and oxygen vacancies VO0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ V_{\rm{O}}^{0} $$\end{document}, VO2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ V_{\rm{O}}^{2 + } $$\end{document}, were investigated by first-principles calculations, which indicated that A site vacancies VK0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ V_{\rm{K}}^{0} $$\end{document} are likely to form in the KTN compared with VK1-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ V_{\rm{K}}^{1 - } $$\end{document} , and oxygen vacancies VO2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ V_{\rm{O}}^{2 + } $$\end{document} are likely to form compared with VO0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ V_{\rm{O}}^{0} $$\end{document} in the KTN according to the investigation of formation energy. The results show that K and O vacancies have significant influence on the atomic interactions of the atoms and the electronic performance of the materials. And Ta atoms are more easily influenced by the K and O vacancies than the Nb atoms from the atomic displacements in KTN with K and O vacancies. The investigation of density of state indicates that the compensation of electrons in KTN with vacancies make the hybridization become stronger among Ta d, Nb d and O p orbitals. Besides, Mulliken population of all the Ta and Nb atoms in KTN with charged vacancies are influenced by complement electrons. The strength of the Nb-O bond is stronger than Ta-O based on the changes of bond lengths and Mulliken population.
引用
收藏
页码:3726 / 3733
页数:7
相关论文
共 160 条
[1]  
Redfield D(1963)undefined Phys. Rev. 130 916-undefined
[2]  
Sirena M(2010)undefined Appl. Phys. 107 113903-undefined
[3]  
Zimmers A(2013)undefined Comput. Mater. Sci. 78 98-undefined
[4]  
Haberkorn N(2014)undefined J. Electron. Mater. 43 6-undefined
[5]  
Kaul E(1987)undefined Appl. Phys. Lett. 50 31-undefined
[6]  
Steren LB(2011)undefined Adv. Mater. 23 1675-undefined
[7]  
Lesueur J(2011)undefined J. Electron. Mater. 40 5-undefined
[8]  
Wolf T(1997)undefined J. Phys. Condens. Matter 9 L315-undefined
[9]  
Gall YL(2007)undefined Phys. Rev. Lett. 98 115503-undefined
[10]  
Grob JJ(2010)undefined Phys. Rev. B 81 174115-undefined