Heparinized hydroxyapatite/collagen three-dimensional scaffolds for tissue engineering

被引:0
|
作者
S. Teixeira
L. Yang
P. J. Dijkstra
M. P. Ferraz
F. J. Monteiro
机构
[1] INEB—Instituto de Engenharia Biomédica,Divisão de Biomateriais
[2] Universidade do Porto,Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia
[3] University of Twente,MIRA Institute for Biomedical Technology and Technical Medicine, Department of Polymer Chemistry and Biomaterials
[4] Faculdade de Ciências da Saúde da Universidade Fernando Pessoa,undefined
来源
Journal of Materials Science: Materials in Medicine | 2010年 / 21卷
关键词
Bone Tissue Engineering; Collagen Film; Alcian Blue Staining; Ethylcarbodiimide Hydrochloride; Ceramic Slurry;
D O I
暂无
中图分类号
学科分类号
摘要
Currently, in bone tissue engineering research, the development of appropriate biomaterials for the regeneration of bony tissues is a major concern. Bone tissue is composed of a structural protein, collagen type I, on which calcium phosphate crystals are enclosed. For tissue engineering, one of the most applied strategies consists on the development and application of three dimensional porous scaffolds with similar composition to the bone. In this way, they can provide a physical support for cell attachment, proliferation, nutrient transport and new bone tissue infiltration. Hydroxyapatite is a calcium phosphate with a similar composition of bone and widely applied in several medical/dentistry fields. Therefore, in this study, hydroxyapatite three dimensional porous scaffolds were produced using the polymer replication method. Next, the porous scaffolds were homogeneously coated with a film of collagen type I by applying vacuum force. Yet, due to collagen degradability properties, it was necessary to perform an adequate crosslinking method. As a result, N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) was employed as an efficient and non-toxic crosslinking method in this research. The composites were characterized by means of SEM, DSC and TNBS. Furthermore, heparin was incorporated in order to accomplish sustained delivery of a growth factor of interest namely, bone morphogenetic proteins (BMP-2). BMP-2 binding and release of non-heparinized and heparinized scaffolds was evaluated at specific time points. The incorporation of heparin leads to a reduced initial burst phase when compared to the non heparinized materials. The results show a beneficial effect with the incorporation of heparin and its potential as a localized drug delivery system for the sustained release of growth factors.
引用
收藏
页码:2385 / 2392
页数:7
相关论文
共 50 条
  • [1] Heparinized hydroxyapatite/collagen three-dimensional scaffolds for tissue engineering
    Teixeira, S.
    Yang, L.
    Dijkstra, P. J.
    Ferraz, M. P.
    Monteiro, F. J.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2010, 21 (08) : 2385 - 2392
  • [2] Bioinspired nanostructured hydroxyapatite/collagen three-dimensional porous scaffolds for bone tissue engineering
    Guan, Junjie
    Yang, Jun
    Dai, Junqi
    Qin, Yunhao
    Wang, Yang
    Guo, Yaping
    Ke, Qinfei
    Zhang, Changqing
    RSC ADVANCES, 2015, 5 (46): : 36175 - 36184
  • [3] Three-Dimensional Scaffolds for Bone Tissue Engineering
    Chinnasami, Harish
    Dey, Mohan Kumar
    Devireddy, Ram
    BIOENGINEERING-BASEL, 2023, 10 (07):
  • [4] Photochemically cross-linked collagen gels as three-dimensional scaffolds for tissue engineering
    Ibusuki, Shinichi
    Halbesma, Gerrit J.
    Randolph, Mark A.
    Redmond, Robert W.
    Kochevar, Irene E.
    Gill, Thomas J.
    TISSUE ENGINEERING, 2007, 13 (08): : 1995 - 2001
  • [5] Three-Dimensional Printing of Calcium Carbonate/Hydroxyapatite Scaffolds at Low Temperature for Bone Tissue Engineering
    Wang, Tiandi
    Zheng, Jianchao
    Hu, Tianzhou
    Zhang, Hongbo
    Fu, Kun
    Yin, Ruixue
    Zhang, Wenjun
    3D PRINTING AND ADDITIVE MANUFACTURING, 2021, 8 (01) : 1 - 12
  • [6] Projection microfabrication of three-dimensional scaffolds for tissue engineering
    Han, Li-Hsin
    Mapili, Gazell
    Chen, Shaochen
    Roy, Krishnendu
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2008, 130 (02): : 0210051 - 0210054
  • [7] Design and development of three-dimensional scaffolds for tissue engineering
    Liu, C.
    Xia, Z.
    Czernuszka, J. T.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2007, 85 (A7): : 1051 - 1064
  • [8] Three-dimensional microfabrication system for scaffolds in tissue engineering
    Lee, Seung-Jae
    Kim, Byung
    Lee, Jin-Sang
    Kim, Sung-Won
    Kim, Min-Soo
    Kim, Joo Sung
    Lim, Geunbae
    Cho, Dong-Woo
    EXPERIMENTAL MECHANICS IN NANO AND BIOTECHNOLOGY, PTS 1 AND 2, 2006, 326-328 : 723 - +
  • [9] Fabrication of three-dimensional scaffolds for heterogeneous tissue engineering
    Li-Hsin Han
    Shalu Suri
    Christine E. Schmidt
    Shaochen Chen
    Biomedical Microdevices, 2010, 12 : 721 - 725
  • [10] Three-dimensional macroporous graphene scaffolds for tissue engineering
    Lalwani, Gaurav
    D'agati, Michael
    Gopalan, Anu
    Rao, Manisha
    Schneller, Jessica
    Sitharaman, Balaji
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2017, 105 (01) : 73 - 83