Strictly purely correct, torsion-free Abelian groups

被引:0
作者
Rososhek S.K. [1 ]
机构
[1] Tomsk State University, Tomsk
关键词
Abelian Group; Direct Summand; Periodic Group; Vector Group; Invariant Subgroup;
D O I
10.1007/s10958-008-9169-1
中图分类号
学科分类号
摘要
In this paper, the concepts of polynomially periodic and polynomially split Abelian groups are introduced and studied. These groups are considered as modules over the ring of integral polynomials. By using these concepts, a description of strictly purely correct, polynomially split vector groups is obtained. © 2008 Springer Science+Business Media, Inc.
引用
收藏
页码:392 / 404
页数:12
相关论文
共 11 条
[1]  
Borsuk K., Theory of Retracts, (1967)
[2]  
Borsuk K., On the topology of retracts, Ann. Math., 48, pp. 1082-1094, (1947)
[3]  
Connell I., Some ring theoretic Schröder-Bernstein theorems, Trans. Amer. Math. Soc., 132, pp. 335-351, (1968)
[4]  
Crawley P., Solution of Kaplansky's test problems for primary Abelian groups, J. Algebra, 2, pp. 413-431, (1965)
[5]  
Fuchs L., Infinite Abelian Groups, (1970)
[6]  
Fuchs L., Infinite Abelian Groups, (1973)
[7]  
Graev M.I., A contribution to the theory of full direct products of groups, Mat. Sb., 17, pp. 85-104, (1945)
[8]  
Mishina A.P., On direct summands of full direct sums of torsion-free rank-1 Abelian groups, Sib. Mat. Zh., 3, pp. 244-249, (1962)
[9]  
Rososhek S.K., Torsion-free modules over Dedekind rings, Mat. Zametki, 16, pp. 387-394, (1974)
[10]  
Sasiada E., Negative solution of Kaplansky's first test problem for Abelian groups, Bull. Acad. Polon. Sci., 9, pp. 331-334, (1961)