An experimental study on the interaction effects between a rectangular supersonic jet and a flat wall at different wall lengths

被引:0
|
作者
T. V. S. Manikanta
B. T. N. Sridhar
机构
[1] Madras Institute of Technology,Department of Aerospace Engineering
[2] Anna University,undefined
来源
Journal of the Brazilian Society of Mechanical Sciences and Engineering | 2024年 / 46卷
关键词
Force/moment coefficient; Rectangular nozzle; Supersonic flow; Shock wave; Wall pressure fluctions; Wall–jet;
D O I
暂无
中图分类号
学科分类号
摘要
An experimental investigation was undertaken to study the effect of placing a flat wall at the exit of a rectangular supersonic nozzle (Aspect Ratio = 2) on the shock cell structure and transverse deflection behavior of the jet issuing from the nozzle.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$.$$\end{document} The design exit Mach number (Me)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M}_{{\text{e}}})$$\end{document} was 1.8. In the experiments, the length of the wall (Lw)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}_{{\text{w}}})$$\end{document} and nozzle pressure ratio (NPR) were varied to explore their effect on the jet interaction with the wall. Schlieren images and wall pressure (pw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p}_{{\text{w}}}$$\end{document}) data obtained from the experiments were used to study shock cell structure and to calculate two-dimensional normal force and moment coefficients. In overexpansion (NPR = 4) conditions, the interaction between the jet and the wall caused a downward deflection of the jet till the wall length (Lw)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}_{{\text{w}}})$$\end{document} was equal to hydraulic diameter (Dh)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D}_{{\text{h}}})$$\end{document} of the nozzle. Underexpansion (NPR = 8) conditions of the jet made the jet deflect upward till the Lw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}_{{\text{w}}}$$\end{document} was equal to 4Dh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ 4D}_{{\text{h}}}$$\end{document}. The maximum upward deflection (7.1°) occurred at underexpansion conditions at Lw=Dh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}_{{\text{w}}}={D}_{{\text{h}}}$$\end{document}. The two-dimensional normal force and moment coefficients calculated from wall pressure (pw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p}_{{\text{w}}}$$\end{document}) distribution were more or less insensitive to the increase in Lw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}_{{\text{w}}}$$\end{document} beyond 4Dh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${4D}_{{\text{h}}}$$\end{document}. However, for Lw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}_{{\text{w}}}$$\end{document}<4Dh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${4D}_{{\text{h}}}$$\end{document}, the jet expansion conditions determined the nature of variation of these coefficients with Lw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ L}_{{\text{w}}}$$\end{document}. Positive and negative values of normal force coefficient corresponded to upward and downward deflection of the jet, respectively.
引用
收藏
相关论文
共 50 条
  • [41] An experimental study of the radial wall jet on a rotating disk
    Itoh, M
    Okada, M
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 1998, 17 (1-2) : 49 - 56
  • [42] Experimental characterisation and data-driven modelling of unsteady wall pressure fields induced by a supersonic jet over a tangential flat plate
    Meloni, Stefano
    Centracchio, Francesco
    de Paola, Elisa
    Camussi, Roberto
    Iemma, Umberto
    JOURNAL OF FLUID MECHANICS, 2023, 958
  • [43] EXPERIMENTAL STUDY OF CIRCULAR TURBULENT WALL-JET ALONG A CONVEX WALL.
    Iida, Sei-ichi
    Matsuda, Hisashi
    Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 1988, 54 (498): : 354 - 360
  • [44] Experimental study of a supersonic jet-mixing layer interaction
    Collin, E
    Barre, S
    Bonnet, JP
    PHYSICS OF FLUIDS, 2004, 16 (03) : 765 - 778
  • [45] EXPERIMENTAL STUDY ON SCREECH SUPPRESSION OF SUPERSONIC FREE JET THROUGH RECTANGULAR NOZZLE
    Chen, Zhe
    Wu, Jiu-Hui
    Chen, Xin
    Lei, Hao
    Ren, Adan
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2015, VOL 4A, 2016,
  • [46] Boiling crisis burnout in the zone of interaction of a circular submerged water jet with a flat wall
    Maceika, A.A.
    Skema, R.K.
    Heat transfer. Soviet research, 1990, 22 (05): : 587 - 594
  • [47] An experimental study of wall-injected flows in a rectangular cylinder
    A. Perrotta
    G. P. Romano
    B. Favini
    Experiments in Fluids, 2018, 59
  • [48] Experimental Study of Heat Transfer between a Plasma Jet and a Rotating Cooled Wall.
    Petit, A.
    Bonet, C.
    Daguenet, M.
    Foex, M.
    Information Circular - United States, Bureau of Mines, 1975,
  • [49] An experimental study of wall-injected flows in a rectangular cylinder
    Perrotta, A.
    Romano, G. P.
    Favini, B.
    EXPERIMENTS IN FLUIDS, 2018, 59 (01)
  • [50] Resonant interaction of a linear array of supersonic rectangular jets: An experimental study
    Raman, G
    Taghavi, R
    JOURNAL OF FLUID MECHANICS, 1996, 309 : 93 - 111