An experimental study on the interaction effects between a rectangular supersonic jet and a flat wall at different wall lengths

被引:0
|
作者
T. V. S. Manikanta
B. T. N. Sridhar
机构
[1] Madras Institute of Technology,Department of Aerospace Engineering
[2] Anna University,undefined
来源
Journal of the Brazilian Society of Mechanical Sciences and Engineering | 2024年 / 46卷
关键词
Force/moment coefficient; Rectangular nozzle; Supersonic flow; Shock wave; Wall pressure fluctions; Wall–jet;
D O I
暂无
中图分类号
学科分类号
摘要
An experimental investigation was undertaken to study the effect of placing a flat wall at the exit of a rectangular supersonic nozzle (Aspect Ratio = 2) on the shock cell structure and transverse deflection behavior of the jet issuing from the nozzle.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$.$$\end{document} The design exit Mach number (Me)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M}_{{\text{e}}})$$\end{document} was 1.8. In the experiments, the length of the wall (Lw)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}_{{\text{w}}})$$\end{document} and nozzle pressure ratio (NPR) were varied to explore their effect on the jet interaction with the wall. Schlieren images and wall pressure (pw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p}_{{\text{w}}}$$\end{document}) data obtained from the experiments were used to study shock cell structure and to calculate two-dimensional normal force and moment coefficients. In overexpansion (NPR = 4) conditions, the interaction between the jet and the wall caused a downward deflection of the jet till the wall length (Lw)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}_{{\text{w}}})$$\end{document} was equal to hydraulic diameter (Dh)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D}_{{\text{h}}})$$\end{document} of the nozzle. Underexpansion (NPR = 8) conditions of the jet made the jet deflect upward till the Lw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}_{{\text{w}}}$$\end{document} was equal to 4Dh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ 4D}_{{\text{h}}}$$\end{document}. The maximum upward deflection (7.1°) occurred at underexpansion conditions at Lw=Dh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}_{{\text{w}}}={D}_{{\text{h}}}$$\end{document}. The two-dimensional normal force and moment coefficients calculated from wall pressure (pw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p}_{{\text{w}}}$$\end{document}) distribution were more or less insensitive to the increase in Lw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}_{{\text{w}}}$$\end{document} beyond 4Dh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${4D}_{{\text{h}}}$$\end{document}. However, for Lw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}_{{\text{w}}}$$\end{document}<4Dh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${4D}_{{\text{h}}}$$\end{document}, the jet expansion conditions determined the nature of variation of these coefficients with Lw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ L}_{{\text{w}}}$$\end{document}. Positive and negative values of normal force coefficient corresponded to upward and downward deflection of the jet, respectively.
引用
收藏
相关论文
共 50 条
  • [31] Experimental study on wall temperature distribution of flat tube
    He, Shi-Jing
    Yan, Chang-Qi
    Sun, Zhong-Ning
    Fan, Guang-Ming
    Hedongli Gongcheng/Nuclear Power Engineering, 2010, 31 (SUPPL. 1): : 60 - 64
  • [32] PROJECT FOR EXPERIMENTAL STUDY OF PHENOMENA OF INTERACTION BETWEEN A GAS STREAM AND A WALL
    KOSOWSKI, S
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES TECHNIQUES, 1971, 19 (02): : 139 - &
  • [33] Computational study of periodically unsteady interaction between a wall jet and an offset jet for various velocity ratios
    Mondal, Tanmoy
    Guha, Abhijit
    Das, Manab Kumar
    COMPUTERS & FLUIDS, 2015, 123 : 146 - 161
  • [34] CFD modeling of the interaction between an oblique wall jet and a parallel offset jet
    Hnaien N.
    Marzouk S.
    Kolsi L.
    Gasmi H.
    Aissia H.B.
    Jay J.
    International Journal of Fluid Mechanics Research, 2019, 46 (02): : 101 - 112
  • [35] CFD Investigation on the Steady Interaction between an Offset Jet and an Oblique Wall Jet
    Hnaien, N.
    Marzouk, S.
    Kolsi, L.
    Al-Rashed, A. A. A. A.
    Ben Aissia, H.
    Jay, J.
    JOURNAL OF APPLIED FLUID MECHANICS, 2018, 11 (04) : 885 - 894
  • [36] CFD MODELING OF THE INTERACTION BETWEEN AN OBLIQUE WALL JET AND A PARALLEL OFFSET JET
    Hnaien, Nidhal
    Marzouk, Saloua
    Kolsi, Lioua
    Gasmi, Hatem
    Ben Aissia, Habib
    Jay, Jacques
    INTERNATIONAL JOURNAL OF FLUID MECHANICS RESEARCH, 2019, 46 (02) : 101 - 112
  • [37] CHARACTERISTICS OF THE JET IMPACT DURING THE INTERACTION BETWEEN A BUBBLE AND A WALL
    Li Shuai
    Wang Shi-Ping
    Zhang A-Man
    PROCEEDINGS OF THE SIXTH INTERNATIONAL SYMPOSIUM ON PHYSICS OF FLUIDS (ISPF6), 2016, 42
  • [38] Interaction Between a Liquid Jet and a Wall at High Temperatures.
    De Salve, Mario
    Panella, Bruno
    Termotecnica Milano, 1985, 39 (02): : 61 - 67
  • [39] An experimental study on the radial wall jet on a rotating disk
    Itoh, M
    Okada, M
    ENGINEERING TURBULENCE MODELLING AND EXPERIMENTS 3, 1996, : 443 - 452
  • [40] An experimental study of the radial wall jet on a rotating disk
    Itoh, Motoyuki
    Okada, Masashi
    Experimental Thermal and Fluid Science, 17 (1-2): : 49 - 56