An experimental study on the interaction effects between a rectangular supersonic jet and a flat wall at different wall lengths

被引:0
|
作者
T. V. S. Manikanta
B. T. N. Sridhar
机构
[1] Madras Institute of Technology,Department of Aerospace Engineering
[2] Anna University,undefined
来源
Journal of the Brazilian Society of Mechanical Sciences and Engineering | 2024年 / 46卷
关键词
Force/moment coefficient; Rectangular nozzle; Supersonic flow; Shock wave; Wall pressure fluctions; Wall–jet;
D O I
暂无
中图分类号
学科分类号
摘要
An experimental investigation was undertaken to study the effect of placing a flat wall at the exit of a rectangular supersonic nozzle (Aspect Ratio = 2) on the shock cell structure and transverse deflection behavior of the jet issuing from the nozzle.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$.$$\end{document} The design exit Mach number (Me)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M}_{{\text{e}}})$$\end{document} was 1.8. In the experiments, the length of the wall (Lw)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}_{{\text{w}}})$$\end{document} and nozzle pressure ratio (NPR) were varied to explore their effect on the jet interaction with the wall. Schlieren images and wall pressure (pw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p}_{{\text{w}}}$$\end{document}) data obtained from the experiments were used to study shock cell structure and to calculate two-dimensional normal force and moment coefficients. In overexpansion (NPR = 4) conditions, the interaction between the jet and the wall caused a downward deflection of the jet till the wall length (Lw)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}_{{\text{w}}})$$\end{document} was equal to hydraulic diameter (Dh)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D}_{{\text{h}}})$$\end{document} of the nozzle. Underexpansion (NPR = 8) conditions of the jet made the jet deflect upward till the Lw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}_{{\text{w}}}$$\end{document} was equal to 4Dh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ 4D}_{{\text{h}}}$$\end{document}. The maximum upward deflection (7.1°) occurred at underexpansion conditions at Lw=Dh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}_{{\text{w}}}={D}_{{\text{h}}}$$\end{document}. The two-dimensional normal force and moment coefficients calculated from wall pressure (pw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p}_{{\text{w}}}$$\end{document}) distribution were more or less insensitive to the increase in Lw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}_{{\text{w}}}$$\end{document} beyond 4Dh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${4D}_{{\text{h}}}$$\end{document}. However, for Lw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}_{{\text{w}}}$$\end{document}<4Dh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${4D}_{{\text{h}}}$$\end{document}, the jet expansion conditions determined the nature of variation of these coefficients with Lw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ L}_{{\text{w}}}$$\end{document}. Positive and negative values of normal force coefficient corresponded to upward and downward deflection of the jet, respectively.
引用
收藏
相关论文
共 50 条
  • [21] Experimental study of a round jet impinging on a flat surface: Flow field and vortex characteristics in the wall jet
    van Hout, R.
    Rinsky, V.
    Grobman, Y. G.
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2018, 70 : 41 - 58
  • [22] Interference studies of interaction between an impulsive supersonic jet and a flat plate
    Bazhenova, TV
    Golub, VV
    Shulmeister, AM
    Bormotova, TA
    Bazarov, SB
    INTERNATIONAL SEMINAR ON OPTICAL METHODS AND DATA PROCESSING IN HEAT AND FLUID FLOW, 1996, 1996 (03): : 327 - 334
  • [23] EXPERIMENTAL STUDY OF ATTACHMENT OF PLANE JET TO A WALL
    DAT, J
    FONADE, C
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1967, 265 (20): : 634 - &
  • [24] Study of the mechanism of the particle—substrate interaction in the case of the impact of a supersonic heterogeneous flow on a flat solid wall
    Nikitin P.V.
    Borisov S.A.
    Dobrovolskiy S.V.
    Gloukhovskaya Y.I.
    Journal of Surface Investigation, 2017, 11 (02): : 375 - 380
  • [25] Numerical Simulation on the Interaction between a Wall Jet and a Parallel Offset Jet
    Chen, Jiangang
    Zhang, Jianmin
    Peng, Yong
    Li, Shuai
    PROCEEDINGS OF THE 35TH IAHR WORLD CONGRESS, VOLS I AND II, 2013, : 4932 - 4938
  • [26] LARGE EDDY SIMULATION OF THE INTERACTION BETWEEN WALL JET AND OFFSET JET
    Li Zhi-wei
    Huai Wen-xin
    Han Jie
    JOURNAL OF HYDRODYNAMICS, 2011, 23 (05) : 544 - 553
  • [27] LARGE EDDY SIMULATION OF THE INTERACTION BETWEEN WALL JET AND OFFSET JET
    LI Zhi-wei
    Journal of Hydrodynamics, 2011, 23 (05) : 544 - 553
  • [28] Large Eddy Simulation of the Interaction Between Wall Jet and Offset Jet
    Zhi-wei Li
    Wen-xin Huai
    Jie Han
    Journal of Hydrodynamics, 2011, 23 : 544 - 553
  • [29] Experimental study of underexpanded supersonic jet impingement on an inclined flat plate
    Nakai, Yusuke
    Fujimatsu, Nobuyuki
    Fujii, Kozo
    AIAA JOURNAL, 2006, 44 (11) : 2691 - 2699
  • [30] EXPERIMENTAL STUDIES OF A RADIAL TURBULENT JET .2. WALL JET ON A FLAT SMOOTH PLATE
    TANAKA, T
    TANAKA, E
    BULLETIN OF THE JSME-JAPAN SOCIETY OF MECHANICAL ENGINEERS, 1977, 20 (140): : 209 - 215