A New Result on Spectral Radius and Maximum Degree of Irregular Graphs

被引:0
作者
Wenqian Zhang
机构
[1] Shandong University of Technology,School of Mathematics and Statistics
来源
Graphs and Combinatorics | 2021年 / 37卷
关键词
Spectral radius; Maximum degree; Diameter; Irregular graph; 05C40; 05C50; 05C70;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a connected irregular graph on n vertices with maximum degree Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} and diameter D. The spectral radius of G, which is denoted by ρ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho (G)$$\end{document}, is the largest eigenvalue of the adjacency matrix of G. In this paper, we study the lower bound of Δ-ρ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta -\rho (G)$$\end{document}. As a result, a new lower bound is obtained which improves the known lower bounds of Δ-ρ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta -\rho (G)$$\end{document}.
引用
收藏
页码:1103 / 1119
页数:16
相关论文
共 18 条
  • [1] Bell FK(1991)On the maximal index of connected graphs Linear Algebra Appl 144 135-151
  • [2] Cioabă SM(2010)A lower bound for the spectral radius of graphs with fixed diameter Eur. J. Comb. 31 1560-1566
  • [3] van Dam ER(2007)Extreme eigenvalues of nonregular graphs J. Comb. Theory Ser. B 97 483-486
  • [4] Koolen JH(1988)A bound on the spectral radius of graphs Linear Algebra Appl. 108 135-139
  • [5] Lee J(2001)A sharp upper bound of the spectral radius of graphs J. Comb. Theory Ser. B 81 177-183
  • [6] Cioabă SM(2007)On the largest eigenvalue of non-regular graphs J. Comb. Theory Ser. B 97 1010-1018
  • [7] Gregory DA(1988)On the maximal index of graphs with a prescribed number of edges Linear Algebra Appl. 110 43-53
  • [8] Nikiforov V(2004)The largest eigenvalue of nonregular graphs J. Comb. Theory Ser. B 91 143-146
  • [9] Hong Y(1987)A bound on the spectral radius of graphs with Linear Algebra Appl. 87 267-269
  • [10] Hong Y(2005) edges Linear Algebra Appl. 409 79-86