On existence of global classical solutions to the 3D compressible MHD equations with vacuum

被引:0
作者
Mingyu Zhang
机构
[1] Weifang University,School of Mathematics and Information Science
来源
Journal of Inequalities and Applications | / 2022卷
关键词
Compressible magnetohydrodynamic equations; Cauchy problem; Global classical solution; Small density; Vacuum; 35A09; 35Q35; 76D03; 76W05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the existence of global classical solutions is justified for the three-dimensional compressible magnetohydrodynamic (MHD) equations with vacuum. The main goal of this paper is to obtain a unique global classical solution on R3×[0,T]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{3}\times [0, T]$\end{document} with any T∈(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T\in (0, \infty )$\end{document}, provided that the initial magnetic field in the L3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{3}$\end{document}-norm and the initial density are suitably small. Note that the first result is obtained under the condition of ρ0∈Lγ∩W2,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho _{0}\in L^{\gamma }\cap W^{2, q}$\end{document} with q∈(3,6)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q\in (3, 6)$\end{document} and γ∈(1,6)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma \in (1, 6)$\end{document}. It should be noted that the initial total energy can be arbitrarily large, the initial density allowed to vanish, and the system does not satisfy the conservation law of mass (i.e., ρ0∉L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho _{0} \notin L^{1}$\end{document}). Thus, the results obtained particularly extend the one due to Li–Xu–Zhang (Li et al. in SIAM J. Math. Anal. 45:1356–1387, 2013), where the global well-posedness of classical solutions with small energy was proved.
引用
收藏
相关论文
共 50 条
[21]   Global existence and convergence rates of smooth solutions for the full compressible MHD equations [J].
Xueke Pu ;
Boling Guo .
Zeitschrift für angewandte Mathematik und Physik, 2013, 64 :519-538
[22]   Global existence and convergence rates of smooth solutions for the full compressible MHD equations [J].
Pu, Xueke ;
Guo, Boling .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (03) :519-538
[23]   Global Existence and Large-Time Asymptotic Behavior of Strong Solutions to the Compressible Magnetohydrodynamic Equations with Vacuum [J].
Lv, Boqiang ;
Shi, Xiaoding ;
Xu, Xinying .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2016, 65 (03) :925-975
[24]   Global classical solutions to the 2D compressible Navier-Stokes equations with vacuum [J].
Ding, Shijin ;
Huang, Bingyuan ;
Liu, Xiaoling .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (08)
[25]   ON CLASSICAL SOLUTIONS OF THE COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS WITH VACUUM [J].
Zhu, Shengguo .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (04) :2722-2753
[26]   Global classical solution to 1D compressible Navier-Stokes equations with no vacuum at infinity [J].
Ye, Yulin .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (04) :776-795
[27]   The global existence and analyticity of a mild solution to the 3D regularized MHD equations [J].
Xiao, Cuntao ;
Qiu, Hua ;
Yao, Zheng-an .
ACTA MATHEMATICA SCIENTIA, 2024, 44 (03) :973-983
[28]   GLOBAL EXISTENCE FOR A CLASS OF LARGE SOLUTIONS TO THREE-DIMENSIONAL COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS WITH VACUUM [J].
Hong, Guangyi ;
Hou, Xiaofeng ;
Peng, Hongyun ;
Zhu, Changjiang .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (04) :2409-2441
[29]   Global existence of strong solutions with vacuum to the multi-dimensional inhomogeneous incompressible MHD equations [J].
Ye, Zhuan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (05) :2891-2917
[30]   Global existence of classical solutions to the two-dimensional compressible Boussinesq equations in a square domain [J].
Huang, Xucheng ;
Shang, Zhaoyang ;
Zhang, Na .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)