Distribution of polynomial discriminants modulo a prime

被引:0
作者
Igor E. Shparlinski
机构
[1] University of New South Wales,Department of Pure Mathematics
来源
Archiv der Mathematik | 2015年 / 105卷
关键词
11T06; 11T23; Discriminant; Character sums;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain bounds of sums of additive characters with discriminants of polynomials over finite fields. We use these bounds to study the distribution of discriminants modulo a prime p.
引用
收藏
页码:251 / 259
页数:8
相关论文
共 18 条
[1]  
Bae S.(2015)Möbius function in short intervals for function fields Finite Fields Appl. 34 235-249
[2]  
Cha B.(1932)The arithmetic of polynomials in a Galois field Amer. J. Math. 54 39-50
[3]  
Jung H.(2014)The autocorrelation of the Möbius function and Chowlas conjecture for the rational function field Quart. J. Math. 65 53-61
[4]  
Carlitz L.(1955)On a theorem of Stickelberger Math. Scand. 3 124-126
[5]  
Carmon D.(1974)La conjecture de Weil, I Inst. Hautes Etudes Sci. Publ. Math. 43 273-307
[6]  
Rudnick Z.(1981)La conjecture de Weil, II Inst. Hautes Etudes Sci. Publ. Math. 52 313-428
[7]  
Dalen K.(2001)Large character sums J. Amer. Math. Soc. 14 365-397
[8]  
Deligne P.(1999)Estimates for “singular” exponential sums Intern. Math. Res. Notices 16 875-899
[9]  
Deligne P.(2002)Estimates for nonsingular multiplicative character sums Intern. Math. Res. Notices 2002 333-349
[10]  
Granville A.(2007)Estimates for nonsingular mixed character sums Intern. Math. Res. Notices 2007 1-19