Multi-state Asymmetric Simple Exclusion Processes

被引:0
作者
Chihiro Matsui
机构
[1] The University of Tokyo,Department of Mathematical Informatics
来源
Journal of Statistical Physics | 2015年 / 158卷
关键词
Asymmetric simple exclusion process; Quantum groups; Integrable systems;
D O I
暂无
中图分类号
学科分类号
摘要
It is known that the Markov matrix of the asymmetric simple exclusion process (ASEP) is invariant under the Uq(sl2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_q(sl_2)$$\end{document} algebra. This is the result of the fact that the Markov matrix of the ASEP coincides with the generator of the Temperley–Lieb (TL) algebra, the dual algebra of the Uq(sl2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_q(sl_2)$$\end{document} algebra. Various types of algebraic extensions have been considered for the ASEP. In this paper, we considered the multi-state extension of the ASEP, by allowing more than two particles to occupy the same site. We constructed the Markov matrix by dimensionally extending the TL generators and derived explicit forms of particle densities and currents on steady states. Then we showed how decay lengths differ from the original two-state ASEP under closed boundary conditions.
引用
收藏
页码:158 / 191
页数:33
相关论文
共 107 条
[1]  
Alcaraz FC(1993)Reaction-diffusion processes as physical realizations of Hecke algebras Phys. Lett. B 23 377-380
[2]  
Rittenberg V(1998)-species stochastic models with boundaries and quadratic algebras J. Phys. A: Math. Gen. 31 845-878
[3]  
Alcaraz FC(1999)Longest increasing subsequences: from patience sorting to the Baik–Deift–Johansson theorem Bull. Am. Math. Soc. 36 413-432
[4]  
Damahapatra S(2013)Matrix product solution of an inhomogeneous multi-species TASEP J. Phys. A Math. Theor. 46 085002-1178
[5]  
Rittenberg V(2009)Spectrum of a multi-species asymmetric simple exclusion process on a ring J. Phys. A Math. Theor. 42 345002-274
[6]  
Aldous D(2011)Recursive structures in the multispecies TASEP J. Phys. A Math. Theor. 44 335004-226
[7]  
Diaconis P(1999)On the distribution of the length of the longest increasing subsequence of random permutations J. Am. Math. Soc. 12 1119-273
[8]  
Arita C(2001)GUEs and queues Probab. Theory Relat. Fields 119 256-1080
[9]  
Mallick K(1931)Zur Theorie der Metalle, I. Eigenwerte und Eigenfunktionen der linearen Atomkette Z. Physik 71 205-449
[10]  
Arita C(1989)Braids, link polynomials and a new algebra Trans. Am. Math. Soc. 313 249-492