A generalization of ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-subdivision ensuring convergence of the simplicial algorithm

被引:0
作者
Takahito Kuno
Tomohiro Ishihama
机构
[1] University of Tsukuba,Graduate School of Systems and Information Engineering
[2] NS Solutions Corporation,undefined
关键词
Global optimization; Strictly convex maximization; Branch-and-bound; Simplicial algorithm; -subdivision;
D O I
10.1007/s10589-015-9817-6
中图分类号
学科分类号
摘要
In this paper, we refine the proof of convergence by Kuno–Buckland (J Global Optim 52:371–390, 2012) for the simplicial algorithm with ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-subdivision and generalize their ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-bisection rule to establish a class of subdivision rules, called ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-k-section, which bounds the number of subsimplices generated in a single execution of subdivision by a prescribed number k. We also report some numerical results of comparing the ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-k-section rule with the usual ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-subdivision rule.
引用
收藏
页码:535 / 555
页数:20
相关论文
共 18 条
  • [11] Locatelli M(1991)-subdivisions Math. Program. 51 229-245
  • [12] Raber U(undefined)On convergence of the simplicial branch-and-bound algorithm based on undefined undefined undefined-undefined
  • [13] Locatelli M(undefined)-subdivisions undefined undefined undefined-undefined
  • [14] Raber U(undefined)Finiteness result for the simplicial branch-and-bound algorithm based on undefined undefined undefined-undefined
  • [15] Thoai NV(undefined)-subdivisions undefined undefined undefined-undefined
  • [16] Tuy H(undefined)Convergent algorithms for minimizing a concave function undefined undefined undefined-undefined
  • [17] Tuy H(undefined)Concave programming under linear constraints undefined undefined undefined-undefined
  • [18] Tuy H(undefined)Normal conical algorithm for concave minimization over polytopes undefined undefined undefined-undefined