A generalization of ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-subdivision ensuring convergence of the simplicial algorithm

被引:0
作者
Takahito Kuno
Tomohiro Ishihama
机构
[1] University of Tsukuba,Graduate School of Systems and Information Engineering
[2] NS Solutions Corporation,undefined
关键词
Global optimization; Strictly convex maximization; Branch-and-bound; Simplicial algorithm; -subdivision;
D O I
10.1007/s10589-015-9817-6
中图分类号
学科分类号
摘要
In this paper, we refine the proof of convergence by Kuno–Buckland (J Global Optim 52:371–390, 2012) for the simplicial algorithm with ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-subdivision and generalize their ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-bisection rule to establish a class of subdivision rules, called ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-k-section, which bounds the number of subsimplices generated in a single execution of subdivision by a prescribed number k. We also report some numerical results of comparing the ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-k-section rule with the usual ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-subdivision rule.
引用
收藏
页码:535 / 555
页数:20
相关论文
共 18 条
  • [1] Horst R(1976)An algorithm for nonconvex programming problems Math. Program. 10 312-321
  • [2] Jaumard B(1998)A simplified convergence proof for the cone partitioning algorithm J. Global. Optim. 13 407-416
  • [3] Meyer C(2001)On the convergence of cone splitting algorithms with J. Optim. Theory Appl. 110 119-144
  • [4] Jaumard B(2012)-subdivisions J. Global. Optim. 52 371-390
  • [5] Meyer C(2015)A convergent simplicial algorithm with J. Global. Optim. 61 203-220
  • [6] Kuno T(1999)-subdivision and Math. Program. A 85 593-616
  • [7] Buckland PEK(2000)-bisection strategies J. Optim. Theory Appl. 107 69-79
  • [8] Kuno T(2000)A convergent conical algorithm with J. Optim. Theory Appl. 107 81-88
  • [9] Ishihama T(1980)-bisection for concave minimization Math. Oper. Res. 5 556-566
  • [10] Locatelli M(1964)Finiteness of conical algorithm with Soviet Math. 5 1437-1440