Analysis of Two- and Three-Dimensional Fractional-Order Hindmarsh-Rose Type Neuronal Models

被引:0
作者
Eva Kaslik
机构
[1] Institute e-Austria Timisoara,Dept. of Mathematics and Computer Science
[2] West University of Timisoara,undefined
来源
Fractional Calculus and Applied Analysis | 2017年 / 20卷
关键词
Primary 26A33; Secondary 33E12; 34A08; 34K37; 35R11; 60G22; fractional-order; Hindmarsh-Rose model; Hodgkin-Huxley equations; neuron; neuronal activity; stability; Hopf bifurcation; bursting; slow-fast system;
D O I
暂无
中图分类号
学科分类号
摘要
A theoretical analysis of two- and three-dimensional fractional-order Hindmarsh-Rose neuronal models is presented, focusing on stability properties and occurrence of Hopf bifurcations, with respect to the fractional order of the system chosen as bifurcation parameter. With the aim of exemplifying and validating the theoretical results, numerical simulations are also undertaken, which reveal rich bursting behavior in the three-dimensional fractional-order slow-fast system.
引用
收藏
页码:623 / 645
页数:22
相关论文
共 33 条
[11]   Firing properties and synchronization rate in fractional-order Hindmarsh-Rose model neurons [J].
Yong Xie ;
YanMei Kang ;
Yong Liu ;
Ying Wu .
Science China Technological Sciences, 2014, 57 :914-922
[12]   Firing Characteristics Analysis of the Fractional-order Extended Hindmarsh-Rose Neuronal Model under Transcranial Magneto-Acoustical Stimulation [J].
Zhao, Song ;
Liu, Dan ;
Luo, Xiaoyuan ;
Yuan, Yi .
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2022, 44 (02) :534-542
[13]   Bifurcations in two-dimensional Hindmarsh-Rose type model [J].
Tsuji, Shigeki ;
Ueta, Tetsushi ;
Kawakami, Hiroshi ;
Fujii, Hiroshi ;
Aihara, Kazuyuki .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (03) :985-998
[14]   APPLICATION OF A TWO-DIMENSIONAL HINDMARSH-ROSE TYPE MODEL FOR BIFURCATION ANALYSIS [J].
Chen, Shyan-Shiou ;
Cheng, Chang-Yuan ;
Lin, Yi-Ru .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (03)
[15]   Bifurcation analysis of a two-dimensional discrete Hindmarsh-Rose type model [J].
Li, Bo ;
He, Qizhi .
ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
[16]   Hybrid Projective Synchronization of Fractional-Order Extended Hindmarsh-Rose Neurons with Hidden Attractors [J].
Shi, Xuerong ;
Wang, Zuolei .
AXIOMS, 2023, 12 (02)
[17]   Adaptive Fuzzy Control for the Generalized Projective Synchronization of Fractional-Order Extended Hindmarsh-Rose Neurons [J].
Liu, Dan ;
Zhao, Song ;
Luo, Xiaoyuan .
IEEE ACCESS, 2020, 8 :190689-190699
[18]   Codimension-two bifurcation analysis in two-dimensional Hindmarsh-Rose model [J].
Liu, Xuanliang ;
Liu, Shenquan .
NONLINEAR DYNAMICS, 2012, 67 (01) :847-857
[19]   0.65V integrable electronic realisation of integer- and fractional-order Hindmarsh-Rose neuron model using companding technique [J].
Khanday, Farooq Ahmad ;
Dar, Mohammad Rafiq ;
Kant, Nasir Ali ;
Rossello, Josep L. ;
Psychalinos, Costas .
IET CIRCUITS DEVICES & SYSTEMS, 2018, 12 (06) :696-706
[20]   Bifurcation Analysis and Stability Criterion for the Nonlinear Fractional-Order Three-Dimensional Financial System with Delay [J].
Zhang, Zhe ;
Zhang, Jing ;
Cheng, Fanyong ;
Xu, Yuebing .
ASIAN JOURNAL OF CONTROL, 2020, 22 (01) :240-250