Cramer’s Rules for Sylvester Quaternion Matrix Equation and Its Special Cases

被引:0
作者
Ivan Kyrchei
机构
[1] Pidstrygach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine,
来源
Advances in Applied Clifford Algebras | 2018年 / 28卷
关键词
Matrix equation; Sylvester matrix equation; Lyapunov matrix equation; Cramer Rule; Quaternion matrix; Noncommutative determinant; Primary 15A24; Secondary 15A09; 15A15; 15B33;
D O I
暂无
中图分类号
学科分类号
摘要
Within the framework of the theory of quaternion column-row determinants and using determinantal representations of the Moore–Penrose inverse previously obtained by the author, we get explicit determinantal representation formulas of solutions (analogs of Cramer’s Rule) to the quaternion two-sided generalized Sylvester matrix equation A1X1B1+A2X2B2=C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbf{A}_{1}{} \mathbf{X}_{1}{} \mathbf{B}_{1}+ \mathbf{A}_{2}{} \mathbf{X}_{2}{} \mathbf{B}_{2}=\mathbf{C}$$\end{document} and its all special cases when its first term or both terms are one-sided. Finally, determinantal representations of solutions to like-Lyapunov equations are derived.
引用
收藏
相关论文
共 140 条
[51]  
Liping H(2014)Cramer rule for the unique solution of restricted matrix equations over the quaternion skew field Automatica 431 2291-81
[52]  
Maciejewski AA(2009)Explicit solutions to the quaternion matrix equations Linear Algebra Appl. 23 71-64
[53]  
Klein CA(2016) and Algebra Colloq. 69 60-1325
[54]  
Mansour A(2016)Cramer’s rule for a system of quaternion matrix equations with applications Automatica 42 1317-1073
[55]  
Nie XR(2018)Output feedback eigenstructure assignment using two Sylvester equations Iran J. Sci. Technol. Trans. Sci 21 1069-109
[56]  
Wang QW(2008)Coupled and constrained Sylvester equations in system design Appl. Math. Lett. 279 93-998
[57]  
Zhang Y(1998)Robust pole assignment via Sylvester equation based state feedback parametrization Linear Algebra Appl. 59 985-74
[58]  
Peng ZY(2011)A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity Linear Multilinear Algebra 23 57-3252
[59]  
Peng YX(2012)A real quaternion matrix equation with applications Electron. J. Linear Algebra 27 3235-81
[60]  
Piao F(2017)Systems of coupled generalized Sylvester matrix equations Adv. Appl. Clifford Algebras 273 74-1063