Cramer’s Rules for Sylvester Quaternion Matrix Equation and Its Special Cases

被引:0
作者
Ivan Kyrchei
机构
[1] Pidstrygach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine,
来源
Advances in Applied Clifford Algebras | 2018年 / 28卷
关键词
Matrix equation; Sylvester matrix equation; Lyapunov matrix equation; Cramer Rule; Quaternion matrix; Noncommutative determinant; Primary 15A24; Secondary 15A09; 15A15; 15B33;
D O I
暂无
中图分类号
学科分类号
摘要
Within the framework of the theory of quaternion column-row determinants and using determinantal representations of the Moore–Penrose inverse previously obtained by the author, we get explicit determinantal representation formulas of solutions (analogs of Cramer’s Rule) to the quaternion two-sided generalized Sylvester matrix equation A1X1B1+A2X2B2=C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbf{A}_{1}{} \mathbf{X}_{1}{} \mathbf{B}_{1}+ \mathbf{A}_{2}{} \mathbf{X}_{2}{} \mathbf{B}_{2}=\mathbf{C}$$\end{document} and its all special cases when its first term or both terms are one-sided. Finally, determinantal representations of solutions to like-Lyapunov equations are derived.
引用
收藏
相关论文
共 140 条
[1]  
Aslaksen H(1996)Quaternionic determinants Math. Intell. 18 57-65
[2]  
Baksalary JK(1979)The matrix equation Linear Algebra Appl. 25 41-43
[3]  
Kala R(1980)The matrix equation Linear Algebra Appl. 30 141-147
[4]  
Baksalary JK(2010)Pose estimation from multiple cameras based on Sylvester’s equation Comput. Vis. Image Underst. 114 652-666
[5]  
Kala R(2000)The quaternionic determinant Electron. J. Linear Algebra 7 100-111
[6]  
Chen C(2012)The generalized Sylvester matrix equations over the generalized bisymmetric and skew-symmetric matrices Int. J. Syst. Sci. 43 1580-1590
[7]  
Schonfeld D(2007)Explicit solution of the operator equation J. Comput. Appl. Math. 200 701-704
[8]  
Cohen N(2016)The consistency and the exact solutions to a system of matrix equations Linear Multilinear Algebra 64 2133-2158
[9]  
De Leo S(2017)On the solutions of two systems of quaternion matrix equations Linear Multilinear Algebra 510 246-258
[10]  
Dehghan M(2016)Roth’s solvability criteria for the matrix equations Linear Algebra Appl. 24 169-180