Fast Algorithms for the Density Finding Problem

被引:0
作者
D. T. Lee
Tien-Ching Lin
Hsueh-I Lu
机构
[1] National Taiwan University,Department of Computer Science and Information Engineering
[2] Academia Sinica,Institute of Information Science
来源
Algorithmica | 2009年 / 53卷
关键词
Maximum-density segment problem; Density finding problem; Slope selection problem; Convex hull; Computational geometry; GC content; DNA sequence; Bioinformatics;
D O I
暂无
中图分类号
学科分类号
摘要
We study the problem of finding a specific density subsequence of a sequence arising from the analysis of biomolecular sequences. Given a sequence A=(a1,w1),(a2,w2),…,(an,wn) of n ordered pairs (ai,wi) of numbers ai and width wi>0 for each 1≤i≤n, two nonnegative numbers ℓ, u with ℓ≤u and a number δ, the Density Finding Problem is to find the consecutive subsequence A(i*,j*) over all O(n2) consecutive subsequences A(i,j) with width constraint satisfying ℓ≤w(i,j)=∑r=ijwr≤u such that its density \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d(i^{*},j^{*})=\sum_{r=i^{*}}^{j*}a_{r}/w(i^{*},j^{*})$\end{document} is closest to δ. The extensively studied Maximum-Density Segment Problem is a special case of the Density Finding Problem with δ=∞. We show that the Density Finding Problem has a lower bound Ω(nlog n) in the algebraic decision tree model of computation. We give an algorithm for the Density Finding Problem that runs in optimal O(nlog n) time and O(nlog n) space for the case when there is no upper bound on the width of the sequence, i.e., u=w(1,n). For the general case, we give an algorithm that runs in O(nlog 2m) time and O(n+mlog m) space, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m=\min\{\lfloor\frac{u-\ell}{w_{\mathrm{min}}}\rfloor,n\}$\end{document} and wmin=min r=1nwr. As a byproduct, we give another O(n) time and space algorithm for the Maximum-Density Segment Problem.
引用
收藏
页码:298 / 313
页数:15
相关论文
共 26 条
  • [1] Chung K.-M.(2004)An optimal algorithm for the maximum-density segment problem SIAM J. Comput. 34 373-387
  • [2] Lu H.-I.(2005)Linear-time algorithms for computing maximum-density sequence segments with bioinformatics applications J. Comput. Syst. Sci. 70 128-144
  • [3] Goldwasser M.H.(1994)An algorithm for identifying regions of a DNA sequence that satisfy a content requirement Comput. Appl. Biosci. 10 219-225
  • [4] Kao M.-Y.(2003)Linear-time algorithm for finding a maximum-density segment of a sequence Inf. Process. Lett. 86 339-342
  • [5] Lu H.-I.(2002)Algorithms for locating the length-constrained heaviest segments, with applications to biomolecular sequence analysis J. Comput. Syst. Sci. 65 570-586
  • [6] Huang X.(2003)MAVG: locating non-overlapping maximum average segments in a given sequence Bioinformatics 19 151-152
  • [7] Kim S.K.(2000)Assessment of compositional heterogeneity within and between eularyotic genomes Genome Res. 10 1986-1995
  • [8] Lin Y.-L.(2000)Emboss: the European molecular biology open software suite Trends Genet. 16 276-277
  • [9] Jiang T.(2000)Large-scale human promoter mapping using CpG islands Gene, Nat. Genet. 26 61-63
  • [10] Chao K.-M.(2001)Joint modeling of DNA sequence and physical properties to improve eukaryotic promoter recognition Gene, Bioinf. 17 S199-S206