A d-dimensional stress tensor for Minkd+2 gravity

被引:0
作者
Daniel Kapec
Prahar Mitra
机构
[1] Harvard University,Center for the Fundamental Laws of Nature
[2] School of Natural Sciences,undefined
[3] Institute for Advanced Study,undefined
来源
Journal of High Energy Physics | / 2018卷
关键词
Conformal Field Theory; Field Theories in Higher Dimensions; Models of Quantum Gravity; Scattering Amplitudes;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the tree-level scattering of massless particles in (d+2)-dimensional asymptotically flat spacetimes. The S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{S} $$\end{document}-matrix elements are recast as correlation functions of local operators living on a space-like cut ℳd of the null momentum cone. The Lorentz group SO(d + 1, 1) is nonlinearly realized as the Euclidean conformal group on ℳd. Operators of non-trivial spin arise from massless particles transforming in non-trivial representations of the little group SO(d), and distinguished operators arise from the soft-insertions of gauge bosons and gravitons. The leading soft-photon operator is the shadow transform of a conserved spin-one primary operator Ja, and the subleading soft-graviton operator is the shadow transform of a conserved spin-two symmetric traceless primary operator Tab. The universal form of the soft-limits ensures that Ja and Tab obey the Ward identities expected of a conserved current and energy momentum tensor in a Euclidean CFTd, respectively.
引用
收藏
相关论文
共 106 条
[1]  
Barnich G(2010)Aspects of the BMS/CFT correspondence JHEP 05 062-565
[2]  
Troessaert C(2014)Asymptotic Symmetries of Yang-Mills Theory JHEP 07 151-undefined
[3]  
Strominger A(2014)On BMS Invariance of Gravitational Scattering JHEP 07 152-undefined
[4]  
Strominger A(2015)BMS supertranslations and Weinberg’s soft graviton theorem JHEP 05 151-undefined
[5]  
He T(2014)Perturbative gravity at null infinity Class. Quant. Grav. 31 225008-undefined
[6]  
Lysov V(2015)Ambitwistor strings at null infinity and (subleading) soft limits Classical and Quantum Gravity 32 055003-undefined
[7]  
Mitra P(2014)New Symmetries of Massless QED JHEP 10 112-undefined
[8]  
Strominger A(2014)Low’s Subleading Soft Theorem as a Symmetry of QED Phys. Rev. Lett. 113 111601-undefined
[9]  
Adamo T(2014)Asymptotic symmetries and subleading soft graviton theorem Phys. Rev. D 90 124028-undefined
[10]  
Casali E(2016)Gravitational Memory, BMS Supertranslations and Soft Theorems JHEP 01 086-undefined