Light-Induced Spin Polarization in Porphyrin-Based Donor–Acceptor Dyads and Triads

被引:0
作者
Art van der Est
Prashanth K. Poddutoori
机构
[1] Brock University,Department of Chemistry
来源
Applied Magnetic Resonance | 2013年 / 44卷
关键词
Electron Paramagnetic Resonance; Porphyrin; Triplet State; Polarization Pattern; Precession Frequency;
D O I
暂无
中图分类号
学科分类号
摘要
The light-induced spin polarization generated by sequential electron transfer in an axially bound triad based on Al(III) porphyrin (AlPor) is discussed. In the triad, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {TTF} \!-\! \text {Ph} \!-\! \text {py}\!\to\!\text {AlPor}\! - \!\text {Ph}\! -\! \text {NDI}$$\end{document}, the electron acceptor naphthalene diimide (NDI) is attached covalently to the Al(III) center, while the donor tetrathiafulvalene (TTF) coordinates to Al(III) via an appended pyridine (py) on the opposite face of the porphyrin ring. Excitation of the porphyrin at room temperature in solution leads to charge separation between the donor and acceptor. In the liquid crystalline solvent 5CB, a spin-polarized transient electron paramagnetic resonance spectrum of a weakly coupled radical pair is observed and is assigned to the state \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text{TTF}^{\cdot + } \text{NDI}^{\cdot - } $$\end{document}. In the absence of the donor, a spectrum of the triplet state of the strongly coupled radical pair \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text{AlPor}^{ \cdot + } \text{NDI}^{ \cdot - } $$\end{document}is obtained. The analysis of the spectra is described using a model developed by Kandrashkin et al. (Appl Magn Reson 15: 417–447, 1998). It is shown that in the triad the spectrum of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text {TTF}^{ \cdot + } \text {NDI}^{ \cdot - } $$\end{document} shows evidence of the singlet–triplet mixing in the precursor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text{AlPor}^{ \cdot + } \text{NDI}^{ \cdot - } $$\end{document}. At later time, singlet recombination leads to inversion of the spectrum, from which the singlet back reaction lifetime is estimated as 350 ns. The decay of the inverted spectrum yields a lifetime of 8.3 μs for the triplet back reaction lifetime.
引用
收藏
页码:301 / 318
页数:17
相关论文
共 159 条
  • [1] Gust D(2001)undefined Acc. Chem. Res. 34 40-48
  • [2] Moore TA(1992)undefined Chem. Rev. 92 435-461
  • [3] Moore AL(2009)undefined Chem. Soc. Rev. 38 25-35
  • [4] Wasielewski MR(2012)undefined Chem. Sci. 3 257-269
  • [5] Hambourger M(2011)undefined J. Am. Chem. Soc. 133 2844-2847
  • [6] Moore GF(2006)undefined Aust. J. Chem. 59 179-185
  • [7] Kramer DM(2012)undefined Appl. Magn. Reson. 42 41-55
  • [8] Gust D(1996)undefined Photochem. Photobiol. 63 11-38
  • [9] Moore AL(2001)undefined Biochim. Biophys. Acta 1507 212-225
  • [10] Moore TA(2007)undefined Appl. Magn. Reson. 31 105-122