Univalent functions in the Banach algebra of continuous functions

被引:0
|
作者
Yong Chan Kim
Jae Ho Choi
机构
[1] Yeungnam University,Department of Mathematics Education
[2] Daegu National University of Education,Department of Mathematics Education
关键词
analytic function; univalent function; Banach algebra; Noshiro-Warschawski theorem;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate several interesting properties of a composition operator defined on the open unit ball B0 of the Banach algebra C(T). We also consider the Noshiro-Warschawski theorem in the Banach algebra of continuous functions.
引用
收藏
相关论文
共 50 条
  • [11] An algebra of absolutely continuous functions and its multipliers
    Bhatnagar, S
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2005, 115 (04): : 383 - 389
  • [12] An algebra of absolutely continuous functions and its multipliers
    Savita Bhatnagar
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2005, 115 : 383 - 389
  • [13] NEIGHBOURHOODS OF UNIVALENT FUNCTIONS
    Pascu, Mihai N.
    Pascu, Nicolae R.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 83 (02) : 210 - 219
  • [14] Coefficient characterizations and sections for some univalent functions
    Obradovic, M.
    Ponnusamy, S.
    Wirths, K. -J.
    SIBERIAN MATHEMATICAL JOURNAL, 2013, 54 (04) : 679 - 696
  • [15] On a variational method for univalent functions
    V. V. Kozhevnikov
    Mathematical Notes, 2007, 81 : 213 - 221
  • [16] On Grunsky norm of univalent functions
    Krushkal S.L.
    Journal of Mathematical Sciences, 2023, 273 (3) : 387 - 397
  • [17] WRIGHT DISTRIBUTION AND ITS APPLICATIONS ON UNIVALENT FUNCTIONS
    Porwal, S.
    Pathak, A. L.
    Mishra, O.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2022, 84 (04): : 81 - 88
  • [18] Coefficient characterizations and sections for some univalent functions
    M. Obradović
    S. Ponnusamy
    K. -J. Wirths
    Siberian Mathematical Journal, 2013, 54 : 679 - 696
  • [19] COEFFICIENT BOUNDS FOR INVERSE OF CERTAIN UNIVALENT FUNCTIONS
    Maharana, Sudhananda
    Bansal, Deepak
    Prajapat, Jugal K.
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 8 (03): : 59 - 65
  • [20] On power deformations of univalent functions
    Yong Chan Kim
    Toshiyuki Sugawa
    Monatshefte für Mathematik, 2012, 167 : 231 - 240